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ABSTRACT

This thesis discusses the design and characteristics of monolithic spiral transformers for use 

at microwave frequencies. Monolithic transformers can be fabricated on GaAs Monolithic 

Microwave Integrated Circuits (MMICs) to perform matching, coupling and balun func-

tions. A computer based program for the analysis of complex coupled microstrip structures 

on MMICs is described and evaluated. This program is used to evaluate coupled microstrip 

lines, spiral inductors, transformers, and Lange couplers. Stray coupling between adjacent 

inductors is also evaluated. Measured results are presented to validate the program. A pro-

cedure is presented to aid in the design of monolithic transformers. Various types of mono-

lithic baluns are also described and compared.
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CHAPTER 1 

INTRODUCTION

1.1.  Transformers in Microwave Circuits

Transformers have been in use since the first application of alternating current energy. All 

applications of transformers centre around one of two characteristics of transformers: the 

ability to easily transform impedance levels (changing the ratio of current to voltage 

without losing a significant amount of power) and the ability to transfer energy between two 

electrical meshes without having the meshes at the same potential. For example, transform-

ers can be used: to generate a high AC voltage when only a low voltage is available; to 

match a low impedance load to a high impedance source; to isolate loads from ground; to 

provide 180 degree phase shifts; to shape pulses; and, by tuning, to provide bandpass filter 

characteristics.

Below the microwave frequencies, transformers consist of two inductors mounted so that 

they share flux linkages. In the audio range, this is done by winding the inductors on a high 

permeability common core, such as laminated iron, which serves to confine the magnetic 

flux. At radio frequencies, the iron core material is usually replaced with powdered iron or 

ferrite, which has more suitable high frequency loss characteristics. If the ferrite is made 

moveable, the transformer self- and mutual inductances can be adjusted, making them 

useful in tuned resonant circuits. Air core transformers can also be used in situations where 

the power or frequency limitations of the ferrite materials can not be tolerated. At low fre-

quencies, the stray capacitance is usually minimized and avoided, but transformers 

designed for radio frequency use can take advantage of the stray capacitance. Such trans-

formers are known as transmission line transformers, and have wider bandwidths and lower 

losses than simple inductive transformers. At microwave frequencies, the traditional trans-

former configurations are unacceptable because core losses become intolerable, and the self 

resonant frequency tends to be too low. If the self inductance of the windings is reduced to 

increase the resonant frequency, the windings become small and awkward to assemble, and 

the mutual inductance decreases, yielding a transformer with poor coupling factor.
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At microwave frequencies, different structures are used to implement transformer func-

tions. An impedance transformation can be made with a quarter wavelength transmission 

line. Balun structures can be made with “Magic Tees”, “Rat race” structures, coupled trans-

mission line structures, or various structures involving finline, slotline, and coplanar 

waveguide. Although these structures are satisfactory for thin and thick film integrated cir-

cuits, they are too large for efficient use in MMIC (Monolithic Microwave Integrated Cir-

cuit) designs. Furthermore, their bandwidth is usually limited to an octave or less.

Microwave circuit designers frequently use high impedance transmission lines when an 

inductance is required. By wrapping a high impedance microstrip line into a spiral, as 

shown in Figure 1.1, the physical dimensions of the inductor can be reduced, and the induc-

tance (and therefore Q) can be increased. This form of inductor, known as either a square 

spiral inductor, or a circular spiral inductor, has been widely used in MMICs, and there are 

numerous techniques for their design. A logical extension of this concept is the spiral trans-

former. A spiral transformer consists of two spiral inductors interwound so that their mutual 

inductance is optimized. The first example of such a concept actually being used was in 

1982 when Podel et al. [1] described a monolithic balanced amplifier that used interwound 

spiral inductors similar to those shown in Figure 1.2 for interstage coupling and biasing. 

Very little information that could be used for design was given, and it appears that little was 

available. Some experimental work, backed up with a computer-aided design program 

based on electromagnetic field theory, was performed by Jansen et al [2][3]. In this paper, 

Figure 1.1. Basic monolithic square spiral inductor.
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they simulated and built a monolithic spiral transformer, and measured its characteristics. 

Here, the first indication of one of the principal limitations of planar transformers is given: 

the inter-winding capacitance leads to asymmetrical operation when used as a balun. These 

two papers, and several Gallium Arsenide (GaAs) monolithic integrated circuits that use 

transformers marketed by Pacific Monolithics have encouraged more detailed research 

work. One paper, [4][5], describes an implementation of a Ruthroff [6] transformer using 

fairly long coupled line sections. Another paper [7] describes a program for modelling 

certain types of monolithic transformers. A full wave electromagnetic analysis of similar 

transformers has also been performed [8], however little work was done in analysing dif-

ferent topologies of transformers.

Most of the impetus for the research into planar transformers has been spurred by the wide-

spread development of high frequency GaAs integrated circuits. GaAs is a useful material 

for the fabrication of microwave monolithic integrated circuits (MMICs) because it can be 

made semi-insulating (as opposed to silicon which is a semiconductor), yielding well iso-

lated circuits and low-loss transmission lines. Metal-Semiconductor Field Effect Transis-

tors (MESFETs) with cutoff frequencies above 30 GHz can be made on GaAs with straight-

forward processing steps. Although transistors fabricated on silicon can have cutoff fre-

quencies almost as high as GaAs FETs, transmission lines fabricated on silicon tend to be 

lossy. The high cost of processing GaAs MMICs, and the need for compact, dense circuitry 

Figure 1.2. Basic monolithic square spiral transformer.
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has increased interest in “almost lumped” devices such as Metal Insulator Metal (MIM) 

capacitors, inductors, and transformers. These functions would have been implemented 

with distributed elements if more conventional thin or thick film technologies were to be 

used. GaAs FETs require high precision lithography and well polished substrates, and these 

qualities are also required for the aforementioned “almost lumped” devices.
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1.2.  Objectives of the Thesis

The purpose of this research is to determine a procedure that can be used to analyse a broad 

range of monolithic transformers, including those with centre taps, and coupled elements 

in general, without the need to resort to full-wave analysis techniques. This thesis describes 

the design, execution, and verification of a computer program for the analysis of monolithic 

spiral transformers, and similar coupled structures. The procedures to be developed are 

intended for use on microstrip line circuitry, and will be particularly useful for MMIC 

designs. This procedure is then used to analyse a variety of transformer structures, so that 

advantages and disadvantages of monolithic transformers can be assessed. New designs for 

balanced transformers are suggested. The computer-aided design procedure is verified with 

numerous measurements of experimental structures.
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1.3.  Thesis Outline

The second chapter deals with the theories behind the analysis of planar monolithic coupled 

structures. Techniques used for calculating the capacitance and inductance matrices of 

coupled lines, and the manner in which they are implemented in the developed computer 

program are described. Chapter 3 deals with the application of the program for the analysis 

of simple, two terminal devices such as transmission lines and inductors. It forms the basis 

for the transformers analysed in the fourth chapter. In both chapters, simulated data is com-

pared with other published data, other CAD programs, and measured data. Chapter 4 also 

deals with the simulation of the balun, which is a special class of transformer used for phase 

splitting. Baluns have special requirements which are not easily met on small MMIC chips. 

Finally, some general observations and recommendations for further research are presented 

in Chapter 5.
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CHAPTER 2 

TECHNIQUES FOR THE ANALYSIS OF MICROSTRIP COUPLED LINES

2.1.  Introduction

Monolithic microwave transformers are complex devices that are not described by any 

simple models. In order to predict their performance, it is necessary to devise a computer 

algorithm to model the physical processes that are occurring therein. A completely general 

electromagnetic simulator is far beyond the scope of this thesis. Instead, the simulator 

described in this work is based on circuit concepts; rather than working with fields directly, 

we work with circuit elements such as capacitance, inductance and resistance. This thesis 

will deal only with microstrip transmission line, which is the most common form of trans-

mission medium on MMICs. In a microstrip circuit, all conductors are formed on a planar 

dielectric substrate. The backside of the substrate has a conducting layer which forms the 

circuit's ground.

This chapter introduces transformer modelling by describing the physical processes occur-

ring in a transformer. A circuit model can be derived for a transformer by looking at these 

processes. In other words, the first part of this chapter describes how one generates an elec-

trical model from the physical layout. The second part of the chapter is devoted to the algo-

rithms required to determine the values of the elements in the electrical model, based on the 

physical dimensions of the transformer. In particular, the capacitance matrix, the induc-

tance matrix, and the loss matrix must be derived. Finally, the last part of the chapter 

describes how the various algorithms are integrated into a flexible and practical computer 

program.
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2.2.  Transformer Modelling

The electrical equivalent circuit model of a microwave spiral transformer, such as the one 

shown in Figure 1.2, can be complicated, so the first model considered will be that of an 

ideal transformer. In an ideal transformer, perfect flux linkage is assumed. In other words, 

it is assumed that all of the flux from the primary inductor links the secondary inductor as 

well. If the inductance of both windings approaches infinity, then the frequency response 

will not have a low frequency limit. If the stray capacitance is assumed to be negligible, then 

the frequency response will not have an upper limit either. With these assumptions, the 

transformer can be modelled as a simple voltage or current transformation, with the voltage 

or current ratio given by n where:

(2.1)

(2.2)

Zin is the impedance seen into the primary when an impedance of Zout is imposed on the 

secondary. This model can be implemented exactly in most simulators using the current 

source and voltage source connected as shown in Figure 2.1. Note that this circuit imple-

mentation also isolates the primary mesh from the secondary mesh, which is important in 

applications such as baluns. This model is accurate for iron core transformers at power line 

n Turns Ratio
SecondaryWindings
Primary Windings

-------------------------------------------------= =

n
I1

I2
----

V2

V1
------

Zout
Zin

------------= = =

Secondary

I2

V1Primary

I=I2*n V=V1*n

V2

I1

 Figure 2.3. Basic transformer model
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frequencies, and sometimes audio frequencies, if the effect of magnetic saturation in the 

iron core is not important. If the effects of the self inductance must be included, then this 

inductance can be included in parallel with either the primary or secondary winding of the 

transformer.

In transformers where inductive coupling is not complete, such as in air core transformers, 

a more complex model is required. At this point, it is necessary to define several terms. The 

primary self inductance (L1) is the inductance of the primary winding of the transformer 

with the secondary winding open circuited. The secondary self inductance (L2) is defined 

in a similar fashion. The mutual inductance (M) can be defined as the flux linking the sec-

ondary winding divided by the current in the primary winding (or vice-versa), or the voltage 

induced in the secondary winding as a result of a current in the primary winding changing 

at a rate of 1 A/s. More useful is the following pair of simultaneous equations that describe 

this simple transformer model:

(2.3)

The variables marked with a prime (I′) are the first time derivatives if the variable. These 

simultaneous equations can be implemented in circuit form in a circuit simulator by using 

the topology shown in Figure 2.2. Note that this model does not isolate the primary mesh 

V1 L1I1 ′ M12I2 ′+=

V2 L2I2 ′ M12I1 ′+=

Figure 2.4. T section model of a transformer.

Primary Secondary
M

L1-M L2-M

V1 V2

I2I1
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from the secondary mesh as the model shown in Figure 2.1 does. It can be seen that the ideal 

1:1 transformer (n=1) is just a special case of this model where L1=L2=M and L1 and L2 are 

allowed to approach infinity. A factor has been defined to describe how closely a trans-

former comes to being ideal. This factor, termed the coupling coefficient, represents the 

fraction of flux linkage from the primary winding that links the secondary winding, or vice-

versa. (Note that the primary-to-secondary coupling coefficient is the same as the second-

ary-to-primary coupling coefficient because of reciprocity.) The coupling coefficient, k, is 

given by:

(2.4)

It is easy to prove that the value of k  must always be less than 1 for any real transformer. A 

value greater than 1 implies that the secondary winding is linking more of the flux from the 

primary winding than the primary winding is, which is clearly impossible.

The model illustrated in Figure 2.2 indicates that any non-ideal transformer will have a 

limited bandwidth, even if parasitic capacitance is neglected. The usefulness of a trans-

former drops off at low frequencies because the inductive reactance of the windings 

becomes too low. At high frequencies, the reactance of the series inductors will limit energy 

transfer. The value of k determines the size of these inductors, and, with the self inductance, 

the upper frequency of operation. Therefore, it is important to keep the value of k  high to 

maintain bandwidth.

In transformers where k  is significantly less than 1,  (2.1) and (2.2) no longer apply, so the 

turns ratio becomes meaningless. Rather, the self and mutual inductance must be specified.

In transformers used at RF frequencies, the eddy current losses occurring in the core mate-

rial and the conductor losses can no longer be ignored. These losses can be accounted for 

by resistances in series with each winding.

k
M

L1L2

----------------=
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So far, only transformers with two windings have been considered. In many real applica-

tions, such as baluns, transformers with several windings must be considered. Equation 

(2.4) can easily be extended to cover multiple winding transformers, as shown in (2.5).

(2.5)

The most straight-forward way to implement a multiple winding transformer in a circuit 

simulator is by using simple two-winding transformers. The circuit shown in Figure 2.3 

illustrates this concept for a three winding transformer. Each winding is between nodes N 

and N'. VN is the voltage between these nodes. Each coupled inductor pair in this circuit can 

be replaced by any of the models described earlier (Figures 2.1 and 2.2), and such models 

are available in most simulators. However, there are several disadvantages in using this 

model for a multi-line transformer. The number of nodes used in the coupled line model 

increases with the square of the number of coupled inductors. The number of nodes 

required to simulate N coupled inductors using this model equals N 2. In the topology 

described later, the number of nodes required is a linear function of the number of coupled 

V1 L1I1 ′ M12I2 ′ M13I3′+ +=

V2 M12I1 ′ L2I2 ′ M23I3′+ +=

V3 M13I1 ′ M23I2 ′ L3I3′+ +=

Figure 2.5. A three winding transformer model.

L1a+L1b=L1=Winding 1 self inductance.
L2a+L2b=L2=Winding 2 self inductance.
L3a+L3b=L3=Winding 3 self inductance.

L1a

L2bL2a

L3a L3b

L1b

M12

M23 M13

1

2

3

1'

2'

3'

I1

I2

I3
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inductors. A numerical difficulty also arises because each coupled inductor pair is model-

ling only a part of the transformer. When calculations are done to determine values for Mxy  

and Lx for real triple (or more) coupled inductors, calculated values of k for the individual 

coupled inductor pairs can legitimately exceed 1. Some simulators do not allow the value 

of k  to exceed 1.

The multiple-coupled inductor model that will form the basis of most of the simulations is 

shown in Figure 2.4. It is a straightforward implementation of (2.5) with series resistors to 

simulate loss, but requires only 3N  nodes for implementation. An added advantage is that 

loss can be implemented with series resistors without using any additional nodes. This 

model is based on elements that are available in all general purpose simulators, viz induc-

tances, resistances, and controlled current sources. Circuits constructed from these ele-

ments can be solved both in the time domain and the frequency domain.

The LM IM terms in (2.5) are represented by the inductors in Figure 2.4. The MMN I′N terms 

are simulated by controlled sources that force current through the inductor LM, thereby 

                 
Figure 2.6. Three winding transformer that uses controlled sources.
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adding to the voltage VM with the appropriate time derivative. The coefficients for the 

current sources are proportional to the mutual inductance and inversely proportional to the 

inductance that the current source must drive (LM).

The final effect that must be included in a high frequency transformer model is the effect 

of interwinding capacitance. There exists capacitance between any pair of windings. If the 

transformer is to be fabricated in monolithic form over a ground plane, the capacitance from 

each element to this ground plane must also be considered. The final model that is used in 

all work in this thesis is shown in Figure 2.5. Although Figure 2.5 pertains to a three 

winding transformer, it can be extended to any arbitrary number of windings.

Until this point, distributed effects have not been considered. At microwave frequencies, the 

length of the windings may be comparable to the wavelength of the energy exciting the 

transformer. One way to deal with this is to use conventional coupled line theory. For pairs 

of lines, even-mode and odd-mode impedances and effective dielectric constants can be cal-

culated, and a 2-port matrix representation (such as an s-parameter matrix) can be deter-

Figure 2.7. Three winding transformer model with parasitics.
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mined. The major difficulty with this approach is that few simulators support multiple-

coupled line models. (SuperCompact version 2.0 [9] supports up to 10 coupled lines, and 

Touchstone [10] supports only pairs and triplets. Most versions of Spice [11] do not support 

any coupled lines.) The problem becomes especially difficult for time domain simulators, 

as the coupled line model must store the state of the line at many time points. Fortunately, 

the lumped approach is accurate for the short line lengths commonly found on MMICs. If 

greater accuracy is desired, then the coupled lines can be broken into smaller subsections. 

In practice, each of the four sides of a transformer or inductor (such as the one in Figure 

1.1) will be simulated with a model such as the one shown in Figure 2.5. Hence, an inductor 

will be simulated with at least 4N  LC sections, where N  is the number of turns. A sche-

matic showing how a transformer (similar to Figure 1.2) would be modelled is shown in 

Figure 2.6. Since each six line transformer model has 30 current sources, the overall trans-

former model is very complex, but not beyond the capabilities of modern simulation tools. 

Since the user has the option of arranging the sections to his liking, and the user has access 

to all the corner nodes, this method of modelling offers great flexibility. 

In general, a single pi section (consisting of a series inductor and two shunt capacitors to 

ground, similar to each section in Figure 2.5) differs from an ideal transmission line by less 

than 2 degrees in electrical length and less than .05 dB in transmission loss at an eighth of 

a wavelength. Multiple pi sections can be used if greater bandwidth is desired. A transmis-

sion line that traverses a 2 mm GaAs chip can be accurately simulated with one pi section 

at 3 GHz. At higher frequencies, more sections could be used, or poorer accuracy could be 

deemed acceptable. Figure 2.7 shows the error in magnitude and phase of S21 of a transmis-

sion line when modelled with various numbers of pi sections for various electrical lengths 

of line in a matched system. Lines unmatched to the characteristic impedance of the system 

will incur larger errors. These errors can, in theory, increase indefinitely at certain line 

lengths for highly mismatched systems, but for practical MMIC circuits, the error is seldom 

greater than a factor of 1.5 greater than the error shown in Figure 2.7. (For example, the 

error on a 110 ohm line (5um wide on a 125 um GaAs substrate) simulated in a 50 ohm 

environment is 6.8 degrees, as compared to 4.8 degrees as predicted by Figure 2.7.) If there 
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is doubt in the accuracy of a simulation, a designer can resimulate a circuit with transmis-

sion lines broken into more subsections. If the circuit’s performance remains similar, then 

the designer can safely assume that the transmission line is being adequately simulated.

Since a minimum single turn inductor is modelled by at least 4 pi sections (one for each 

side), and inductors are rarely used below their quarter wave resonant frequency, inductors 

invariably have enough sections for an accurate simulation. For straight lengths of transmis-

sion line, however, one must make an estimate of the wavelength to calculate the number 

of sections required. For microstrip lines on GaAs, the εeff is roughly 7, and wavelength is 

11 cm⋅GHz. For other materials, the safest estimate of velocity is to assume that εeff=εr.The 

number of sections required should be selected via Figure 2.7 given the length of line being 

simulated in wavelengths.

Transformer 

models (4)

1 2

2' 1'

Figure 2.8. Simulation of a 2.75 turn transformer using four transformer sections, each 
section being described by a model similar to the one shown in Figure 2.5.
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elled with 1, 2, 4, and 8 pi sections.
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At this point, we have determined an appropriate model for a simple transformer. Actual 

transformers when laid out may require more components to form an accurate model, espe-

cially at high frequencies. Transformers formed from parallel microstrip transmission lines 

will undoubtedly have bends when formed into the spiral configuration, and these bends 

may be modelled as a lumped capacitance to ground with an electrical delay [12]. The inter-

connections to the transformer will certainly add electrical delay, and they may also couple 

into the main coupled line section. Where two microstrip lines cross over each other (using 

a MMIC air bridge, for instance) there will be extra capacitance [13]. In any case, it can be 

seen that any of these effects can be modelled using four fundamental circuit elements: the 

resistor, capacitor, inductor, and the multiple coupled inductor, which itself is made up of 

inductors and controlled current sources. The next sections will be devoted to the determi-

nation of the electrical parameters of these elements based on the physical dimensions of 

the conductors.
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2.3.  Inductance and Capacitance Matrix

It is convenient to describe the capacitance and inductance associated with coupled trans-

mission lines in terms of a matrix. Generally, the matrices quantify the inductance or capac-

itance on a per unit length basis, implying that the values are independent of length. For a 

system with N conductors, the capacitance matrix is an N by N symmetric matrix. The ele-

ments, termed the coefficients of capacitance, are defined below [14]:

(2.6)

where QN  is the total charge on the N th conductor, and VN is the voltage on the N th con-

ductor relative to ground. The off-diagonal capacitance coefficients (mutual capacitance 

coefficients) are always negative because conductors must be of opposite polarity (relative 

to the common ground) to induce more charge on each other. Note that any capacitance 

matrix based on a physically realizable topology will be positive definite. In order to use 

this matrix in a circuit topology similar to the one shown in Figure 2.5, the following trans-

formation [14] is used:

 

 (2.7)

where Ccij is the model capacitance between the ith and the jth conductor, or to ground if 

i=j, in the equivalent circuit model. This capacitance is often divided between two equal 

capacitors connected to either end of the conductor.
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The inductance matrix for a system of N conductors is an N by N symmetric matrix. The 

elements of this matrix are defined as follows:

(2.8)

Where ΦN  is the flux linking the Nth conductor, and IN is the current through the Nth con-

ductor. Each diagonal inductance terms is the self inductance of the ith conductor with all 

other conductors open. The off diagonal terms are the mutual inductance terms. The induc-

tance matrix provides the circuit values required in Figure 2.5 without any conversions.

It is often assumed that the inductance per unit length, and capacitance per unit length of a 

transmission line is constant with respect to frequency. This is equivalent to assuming that 

the characteristic impedance and velocity of propagation of the transmission line are con-

stant with respect to frequency. This is known as the TEM (Transverse ElectroMagnetic) 

assumption. A transmission line that propagates only a TEM mode (a mode where both H 

and E fields are perpendicular to the direction of propagation) exhibits constant impedance 

and velocity with respect to frequency. Coaxial lines, striplines, and other media with 

homogeneous dielectric and two conductors are considered truly TEM below the frequency 

at which other modes can propagate (although the variation in the skin depth in the conduc-

tor causes changes in the inductance, and therefore characteristic impedance, at low fre-

quencies [15]). Microstrip, and other media with inhomogeneous dielectric are not truly 

TEM media. As frequency changes, the distribution of the field in the different dielectrics 

changes, causing changes in transmission line parameters. This change in transmission line 

parameters with frequency is known as dispersion. In microstrip, dispersion causes the 

effective dielectric constant (εeff) to change from its DC value to the dielectric constant of 

the substrate as frequency increases. The frequency at which dispersive effects perturb a 

microstrip line to the point that εeff has increased from its DC value to the average of its DC 

value and εsubstrate is given by (2.9) [16].
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 (2.9)

where F0 is in GHz, and h is in cm. A microstrip line must be used well below this fre-

quency if dispersive effects are to be avoided. Since the basic parameters of a TEM trans-

mission line are constant with respect to frequency, the parameters can be calculated at DC.

F0

Z0

2µh
----------

1

0.6 0.009Z0+
--------------------------------------=
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2.4.  Capacitance Calculations

The capacitance matrix can be obtained many ways. This section deals with several of the 

more popular techniques, and describes the technique used for this work in detail.

Conformal mapping may be used to map the actual cross-sectional detail of a transmission 

line to an imaginary cross-section that is more amenable to calculations. This technique has 

been successfully used for some simple microstrip structures. The advantage of this tech-

nique is that it may yield a closed-form expression for capacitance based on physical 

parameters. Unfortunately, it has not been used for multiple coupled lines such as the ones 

used in transformers and inductors. Frlan [7] uses a technique similar to this [17] to calcu-

late self-capacitance, and the capacitance between adjacent lines in an inductor, and 

assumes that the rest of the capacitances are negligible.

Numerical techniques may be used to solve Laplace's equation for the electric field using, 

for example, a finite difference technique [18]. This technique has the advantage of being 

able to handle very general geometries, including bends, but the numerical work required 

makes it very slow. If this amount of computational work is to be done, then a complete full 

wave analysis may be more appropriate [3].

The technique used to calculate the capacitance matrix in this work is the method of 

moments (MOM)[14][19][20]. MOM can be used equally well on single lines or on multi-

ple coupled lines. In this technique, one calculates the charge induced on all conductors if 

a potential of 1 volt is applied to one or two of the conductors with the other conductors 

grounded. Central to this calculation is the dielectric Green's function which gives the 

potential at a position relative to a line source of charge. This function can be relatively 

complex, as it must include the effects of the dielectric and the ground plane. The perimeter 

of each conductor is divided up into straight subintervals. A conductor with square cross-

section would likely have at least 10 subintervals and more if high accuracy is required. A 

charge density is often assumed to be a linear function of distance along each subinterval. 

In other words, the charge density along the perimeter of each conductor is assumed to be 

a piecewise linear function of the distance around the perimeter. (As a result, one benefits 
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by using many subintervals around the square edge of a conductor where large peaks in the 

electric field, and hence charge density are expected. [19]) The charge density along each 

segment (which is presently unknown) multiplied by the Green's function is integrated to 

determine the potential at any point on the conductor. The potential on each conductor is 

known, however, so an error function can be formulated. By applying the least squares tech-

nique, the error is minimized, and the best fit can be found. The result is a set of coefficients 

that describes the piecewise linear approximation to the charge density around the perime-

ter of each conductor. By integrating this charge density, a capacitance can be determined 

since the potential is set at 1 volt. This procedure is performed first for all possible config-

urations where one conductor is excited by 1 volt, (and the others grounded), and then all 

possible configurations where two conductors are excited by 1 volt (and the others 

grounded). This set of (N 2+N )/2 capacitances can be combined to determine the complete 

capacitance matrix.

This technique does not yield a closed-form expression, but it can be relatively quick, and 

is not iterative, although the integration is done numerically. Green's functions are available 

for several conductor configurations. In the implementation used in this work, the Greens 

function used applies to a thin conductor of finite width directly over a grounded substrate. 

A program implementing the MOM for coupled microstrip lines was available for this work 

[21]. The accuracy of this program has been verified by comparing the capacitance that it 

calculates with the Bryant Weiss technique [20], and with SuperCompact [9]. Accuracy of 

better than 1% is possible for typical transmission line structures [19]. In structures where 

large differences in the widths of the conductors exists (a factor of 10 or more), larger inac-

curacies, and possibly erroneous results can occur, but such structures are not often used in 

MMICs.
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2.5.  Inductance Calculations

In this section, methods for determining the self- and mutual- inductance of multiple par-

allel transmission lines will be discussed. Inductance can be calculated to good accuracy 

using closed-form expressions. Unlike capacitance, the inductance matrix can be derived 

by examining the set of parallel lines in pairs; in other words, the inductance of a pair of 

lines is not affected by an adjacent, unconnected line. The same is not true of the capaci-

tance matrix where all lines must be considered simultaneously. Inductance can also be 

directly calculated using a moments method solution [22], but the technique is complicated 

by the fact that the potential field that must be matched is a vector field (A) rather than a 

scalar field (V). As microstrip lines are quasi-TEM structures, the inductance matrix can 

also be derived from a capacitance matrix.

2.5.1.  Closed-Form Expressions

Grover [23] has collected many closed-form expressions for the inductance of segments, 

coils, and other shapes. These have formed the basis for many of the published papers on 

monolithic inductors, starting with a widely referenced paper by Greenhouse [24]. The 

technique has been refined by other authors [25] . The basis for many of these techniques 

is the formula for the mutual inductance of two filamentary parallel conductors of finite and 

equal length [23].

 (2.10)

Where L is the mutual inductance in nH, l  is the line length in cm, and d is the distance 

between the filaments in cm. This formula can be derived by determining the magnetic field 

surrounding a filamentary conductor carrying a DC current. This is done by integrating the 

Biot-Savart law over the length of a filament. The resulting B field is integrated from the 

position of the second conductor to infinity, as shown in Appendix A. This formula can be 

used directly to calculate the mutual inductance of pairs of approximately filamentary con-

ductors (when separation is large compared to the conductor width).
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When the mutual inductance of conductors of finite width located close to each other is 

required, the conductor width must be taken into account. If it is assumed that the length of 

the two conductors is much greater than the spacing, which is the case for most conven-

tional distributed microstrip lines, then  (2.10) simplifies to [23] :

 (2.11)

Note that the last term of (2.11) is found by expanding (2.10) into a Maclaurin series. It is 

small enough that it is usually ignored.

In order to determine the mutual inductance of two conductors of finite width, each con-

ductor is subdivided into filamentary conductors. The mutual inductance of the finite sized 

conductors is the average of the inductances between every pair of filaments. To do this cal-

culation, it is necessary to integrate (2.10) or (2.11) over the cross-sectional area of the two 

conductors involved. The integration of (2.10) is intractable, but the integration of (2.11) 

yields the following:

                                     (2.12)

Where one conductor's width and thickness are w1 and t respectively, and the other conduc-

tor's are w2 and t. The areas of the conductors are Area1 and Area2. The distance between 

the filaments is the variable of integration, d. The two resulting integrals have physical sig-

nificance. The first one is the arithmetic average distance of every point within one conduc-

tor to every point within the other, and is known as Arithmetic Mean Distance, or AMD. 

The AMD of two rectangles is simply their centre-to-centre distance. The second integral 

represents the average of the logarithms of the distance between every point in each con-

ductor, or the logarithm of the Geometric Mean Distance (GMD). Although the GMD can 
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not be calculated as easily as AMD, numerous formulae have been derived for the GMD 

between various cross-sectional areas [26][27]. In the case of conductors of rectangular 

cross-section, the exact value of GMD can be calculated. This lengthy equation is printed 

in Appendix B. Although it has not been widely used because of its length, the equation is 

easily implemented in a computer program. Rewriting (2.12) with AMD and GMD replac-

ing the integrals, we get:

  (2.13)

Notice that because of the approximation used to derive (2.11), this equation is only accu-

rate for parallel conductors that are much longer than their separation.

So far, only mutual inductance has been treated. The self inductance of a conductor can be 

calculated by finding the GMD and AMD of a conductor from itself and substituting these 

values into (2.11). Of course, the AMD is 0, but the GMD is finite, and given approximately 

by (2.14). Since a conductor is close to itself, the assumption that d/l is small is highly accu-

rate. The self inductance of a conductor of width w by thickness t is given to high accuracy 

by  (2.15):

(2.14)

(2.15)

These closed-form equations can not be used in every instance, and their accuracy is lim-

ited. If the conductor length is short relative to the space between conductors, then the 

approximation (2.11) can not be used. Instead, the general formula must be used, and it can 

not take into account the finite width and height of the conductors. Fortunately, when the 

ratio of gap to length for a conductor is large, the inductance is small and will constitute a 

small part of the total inductance of an inductor. In cases such as rectangular spiral induc-

tors, the designer must decide whether to use (2.10) and accept the loss of accuracy because 
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of the width of the conductor or to use (2.11) and accept the loss of accuracy because of the 

short conductor length.

A more general form of (2.10) can be derived to calculate the mutual inductance of filamen-

tary conductors each of arbitrary length, and without coincident ends. In fact, the lines need 

not even lie beside each other. The mutual inductance is given by [23]:

where  ,  , and  (2.16)

           

This equation can be simplified to (2.10) by setting l=m and l =-  . This form  is useful for 

calculating the coupling between adjacent, offset inductors.

The presence of a ground plane changes the self- and mutual-inductance of lines signifi-

cantly. Even a cursory look at (2.11) indicates that as length approaches infinity, per unit 

length inductance also approaches infinity. From simple transmission line theory, it is 

known that the inductance per unit length of a transmission line is a constant. This incon-

sistency is due to the fact that the ground plane of the transmission line has not been con-

sidered. The boundary condition for the electric field stipulates that the electric field 

tangential to a conducting plane must vanish. One of Maxwell's equations stipulates the 

relation between electric and time varying magnetic fields:
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 (2.17)

If Cartesian coordinates are used and the x  and y  components of the E field are assumed 

to vanish, then (2.17) simplifies to:

 (2.18)

From this equation one can deduce that the time varying H field must have no component 

normal to a conducting plane. Therefore, a current must be induced into the ground plane 

to cancel the H field caused by the current flowing in the wire above the plane. The current 

in the ground plane is modelled by an image conductor located on the opposite side of the 

ground plane to the real conductor. The image conductor carries a current in the opposite 

direction to the image conductor as shown in Figure 2.9. This current is in a direction that 

reduces self-inductance. The mutual inductance between adjacent lines is also reduced by 

this effect. The self inductance of the line is reduced by the mutual inductance between the 
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lines. The self-inductance of a line separated from a ground plane can be calculated by sub-

tracting (2.11) from (2.15) and assuming the d2/l2 term vanishes:

(2.19)

As the length of the transmission line is increased to infinity, the inductance per unit length 

reaches a limit given by (2.19). This effect, and its experimental verification is discussed in 

more detail in Chapter 3.

Another significant source of error incurred when closed-form equations are used is that the 

current flowing throughout the cross-sectional area of the conductor is assumed to be uni-

form. In fact, because of skin effect, and because of the high electric field along the edge of 

a microstrip line, charge will accumulate along the edges of the conductors. The charge 

density at DC can be calculated from the method of moments solution. The skin effect can 

be calculated by assuming that the conductor is split into numerous closely spaced fila-

ments, each with a finite conductivity. The mutual coupling, and the finite conductivity 

result in an expulsion of current flow from the centre of the conductor at higher frequencies. 

The skin effect has a pronounced effect on losses, but the effect on self and mutual induc-

tance is minimal. The effect of high electric field appears to be more noticeable, especially 

in mutual inductance calculations between closely spaced lines. One could take this into 

account by assigning a weighting factor in a numerical integration of the distances in a 

GMD calculation, but this has not been done in this work.

2.5.2.  Inductance from the Capacitance Matrix

The other way to derive the inductance matrix is to use the fact that the microstrip is, to a 

good approximation, a TEM structure (see section 2.3), and that the inductance matrix does 

not depend on the substrate dielectric constant. If it is assumed that the substrate material 

has a dielectric constant of 1, then the velocity of propagation in that medium is , the 

speed of light. The speed of light also determines the ratio of capacitance to inductance:
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 (2.20)

Therefore, the inductance matrix for that structure can be determined by inverting the 

capacitance matrix. This technique will be referred to as the Inversion of the Capacitance 

Matrix (ICM) technique. The ICM technique is especially elegant if a capacitance matrix 

is being calculated anyway; one need only re-run the capacitance matrix program assuming 

unity dielectric constant, and invert the result.

The ICM technique produces an inductance matrix for a different set of conditions than the 

closed-form equations. The closed-form equations were derived assuming that current 

flows throughout the cross-sectional area of the conductor. The ICM technique assumes 

that the current flows only on the surface of the conductors. The ICM technique assumes 

that a perfect TEM wave exists on the conductor. As a result, colinear conductors do not 

magnetically couple, and the inductance per unit length is constant for any length of line. 

The closed-form equations do not assume the propagation of TEM waves, so that colinear 

conductors do couple. Therefore, inductance per unit length is dependent on length, as  

(2.11) confirms.

The operational differences between these two approaches is explored in Chapter 3.

ν 1

L[ ] C[ ]
---------------------=
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2.6.  Loss Calculations

Techniques for calculating loss that are applicable to MMIC sized structures are not widely 

available. Because semi-insulating substrates are commonly used, the dielectric loss 

tangent is usually less than .001, and dielectric losses can be ignored. If semiconducting 

substrates such as silicon were to be used, then the substrate loss tangent would have to be 

included. Only conductor loss is considered in this analysis. A first-order approximation to 

conductor loss is to calculate the DC resistance of the conductors, and include fixed resis-

tors with these values in series with the inductances shown in Figure 2.5. This procedure is 

accurate at DC, and should be accurate for conductors that have dimensions smaller than 

the skin depth. Usually, only the smallest conductors on digital MMICs are this small, and 

they are very lossy. Although they are lossy, such conductors can still be accurately 

described with the TEM approximation [28]. The more typical MMIC conductor has a 

thickness on the order of the skin depth, and a width of many skin depths. For example, the 

skin depth of gold at 4 GHz is 1.2 um, and a typical MMIC conductor is 2 um thick and 10 

um wide. In these conductors, the currents tend to flow preferentially along the edges of the 

conductor (although the current in the middle of the conductor will not approach 0). In 

larger conductors, typically fabricated on ceramic or soft substrates, RF currents tend to 

flow along the surface of the conductor. If the conductor cross section is large enough, vir-

tually no RF current flows in the central core. The classical theory on microstrip loss [29] 

assumes that the conductors are at least 3 skin depths thick. To date, no closed-form or 

simple numerical techniques have been devised to determine the losses of microstrip con-

ductors with thicknesses comparable to skin depth. Numerical techniques have been 

applied to single microstrip lines, and the results have been tabulated for the geometries of 

interest to the MMIC designer. An article by Pettenpaul et al. [30] gives a table listing cor-

rection factors to the DC resistance, given the “normalized frequency” and the ratio of 

width to conductor thickness, based on numerical methods. He also gives empirical data in 

the form of two closed-form expressions, one valid below a w/t ratio of 2.5, and the other 

valid for higher ratios.

To implement this loss in a simulator, a frequency-dependent resistor must be used. Super-

Compact allows only simple algebraic expressions to define component parameters, so the 
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two empirical loss expressions can not be used. Pettenpaul's second expression (equation 

1b in his paper), valid for w/t>2.5 can be fitted over the entire range of tabulated data with 

sufficient accuracy. The empirical expression is:

(2.21)

(2.22)

where w is the width of conductor in um, t  is the thickness of conductor in um, R0 is the 

DC resistance of the conductor in ohms,  is the metal’s conductivity, F is frequency in Hz, 

 is the permittivity of the conductor, x is the normalized frequency, and K1, K2, and K3 are 

fitting parameters. Table 2.1 shows the fitting factors for various ratios of conductor width 

to conductor thickness. Figure 2.10 shows the AC resistance predicted from the empirical 

formula and the tabular results. The maximum error is less than 6% which is acceptable for 

a loss calculation. Notice that the loss is given for a line isolated in space over a ground 

plane. The effect of neighbouring lines is not included, and this will tend to make the loss 

prediction optimistic.

RRF Ro 1 K1x
2 K2 K3x

2
+( )

+=

x 2Fσµwt=

σ

µ

K3

-5.582820E-4 
-5.519648E-4  
-5.362747E-4  
-4.046604E-4  
-7.854366E-5   
1.296432E-4   

w / t  Ratio

1 2
4 6
12
18

K1

5.956121E-2
5.202810E-2
3.632865E-2
3.555208E-2
4.062991E-2
3.031919E-2

K2

.9146308

.9352023

.9813440

.9482391

.8202279

.7623477  

Table 2.1
 Fitting factors used to calculate the DC resistance correction factor.
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Figure 2.12. Normalized AC resistance vs. Frequency. Doted line is data from [30], solid 
line is data fitted with (2.21) and Table 2.1.
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2.7.  Program Integration

To conveniently examine the complex coupled line structures, an integrated program called 

GEMCAP (GEneral Microstrip Coupling Analysis Package) has been written. GEMCAP 

acts as a pre-processor to common circuit simulation programs such as SuperCompact [9], 

Touchstone[10], and Scamper[11]. GEMCAP accepts as input a standard “Netlist” in 

which special coupled-line descriptors have been embedded. GEMCAP calculates the 

capacitance and inductance matrices for the lines, and creates an equivalent circuit model 

that can be simulated by a circuit simulator. The program is written in FORTRAN, in 4 sec-

tions: the input, capacitance, inductance, and output sections. Their functions will be 

briefly described below.

The input to GEMCAP is in the form of two files: an input file that is in the form of a netlist, 

and a profile. The input file contains both elements and commands native to the simulator 

(either SuperCompact, Touchstone, or Scamper), and special commands that describe the 

coupled lines. The user must specify the substrate dielectric constant and thickness, the 

conductor thickness and resistance (ohms per square) and line widths, gaps and lengths. 

These descriptors are described in detail in Appendix C. Up to 20 coupled conductors can 

be handled, but the simulator usually imposes tighter restrictions. The profile file specifies 

analysis options, such as the type of inductance calculation that is to be done, capacitance 

calculation accuracy, etc.

The input segment of GEMCAP reads the input file, does simple checks on syntax, extracts 

parallel conductor information (length, width, spacing, etc.), and places the information 

into files that are used by the following program segments.

The capacitance program performs a MOM solution of the geometries fed to it by the input 

program. If the inductor matrix is to be derived by the ICM technique, then a second capac-

itance matrix is derived by assuming a dielectric constant of 1. The Green's function used 

is for an infinitely thin conductor over a uniform dielectric. Trapezoidal excitation is used 

where the charge around the conductor is assumed to be a piecewise linear function of the 

distance around the conductor. The user can specify the number of subsections that the con-
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ductor is divided into in the profile. Typically, analysis with the conductor broken into 8 

sections is suggested.  The output from this program is a file that contains the capacitance 

matrix.

The inductance program is the most elaborate program, as it can derive the inductance 

matrix several ways. If the user has specified in the profile that the inductance matrix is to 

be derived by inverting the capacitance matrix, then the inversion is done here. If closed-

form equations are to be used, then there are several options. If two conductors are long and 

close, so that width must be taken into account, then detailed GMD calculations are done 

to calculate the mutual inductance. If the two lines are offset from each other, then (2.16) 

is implemented. The flow chart shown in Figure 2.11 shows the overall process for calcu-

lating inductances most clearly. Note that the input to the inductance calculating program 

can contain parallel lines located anywhere on a plane; not just side by side. The output of 

the inductance program is a file containing the inductance matrix.

The output program reads the capacitance and inductance matrices and incorporates them 

into the equivalent circuit shown in Figure 2.5. The equivalent circuit is written to the output 

file using current sources, resistors, capacitors, and inductors native to the simulator to be 

used. It also calculates the values of resistors or frequency dependent resistors for imple-

menting losses correctly. Lines in the input file that were not used by the input program are 

duplicated in the output file. The output file can be directly read into either SuperCompact, 

Scamper, or Touchstone.

The analysis of an inductor or transformer is done in three steps. First, an input file is 

written as described above. GEMCAP is invoked, and the four sections of program are auto-

matically run. This part of the process runs without intervention. Finally, the simulator of 

the user's choice solves the netlist produced by GEMCAP. Restrictions in the complexity 

and size of the input file are imposed both by GEMCAP and the circuit simulator.

GEMCAP places the following restrictions on the geometries to be entered: No more than 

60 segments, mutually coupled to each other, can be entered. These segments can be made 

up of blocks of side by side lines, each block containing no more than 20 lines. GEMCAP 
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can handle an unlimited number of 60 segment coupled line systems. To illustrate this, 

Figure 2.12 shows 6 blocks of 4 lines each, in a Lange coupler configuration. GEMCAP 

calculates the capacitance from every segment to ground, and between each side by side 

segment. It can also calculate the self inductance of every segment, and the mutual induc-

tance between every pair of segments, regardless of position, although only the mutual 

inductance of close lines is usually included. Each arm of the Lange coupler could be 

divided into up to 7 pieces, and the total would be less than 60 segments. Each arm must 

contain no more than 20 parallel elements, however. More details are given in Appendix C.

GEMCAP will have limited accuracy when simulating coupled lines that have gaps wider 

than line length or line width greater than line length.  The line width and gap restrictions 

are principally due to the assumption that current flow is uniform across the conductor. 

These configurations are dominated by end effects, and require full wave analysis for 

proper simulation. Substrate height restrictions stipulate that line width should be no more 

than the substrate height if the closed-form equations are to be used. The loss calculation is 

valid from w/t ratios of 1 to over 20. w/t ratios beyond this range will be pessimistic by a 

maximum factor of 2.5. The thickness of the conductor must be kept smaller than the gap 

between conductors and the width of the conductor, as the capacitance calculations assume 

an infinitely thin conductor, and the inductance calculations take conductor thickness into 

account approximately.

The circuit simulator usually provides a more severe restriction on the size of the circuits 

that can be analysed. SuperCompact [9] has a 50 node limit in Version 1.95 on an IBM 

mainframe, which implies that no more than 25 segments can be placed in a block. All 3 

simulators have vague limits on the size of the file that can be accepted. Scamper is capable 

of handling the largest files. The Lange coupler, shown in Figure 2.12, containing 24 ele-

ments, and spiral inductors containing 36 elements have been successfully analysed in 

Scamper. For extremely complex topologies, such as some of the transformers described in 

Chapter 4, it is better to fit a model (similar to the ones in section 2.2) to the simulated data, 

rather than using the GEMCAP output in a circuit design.  
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Figure 2.14. GEMCAP equivalent circuit for a Lange Coupler.
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CHAPTER 3 

GEMCAP VALIDATION

3.1.  Introduction

This chapter deals with the use of GEMCAP in the analysis of familiar microwave elements 

such as transmission lines, couplers, and inductors. Simulated parameters will be compared 

to measured results, other simulators, and published results. The goal of the chapter is to 

validate GEMCAP and some of its underlying assumptions, and to determine its range of 

validity.
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3.2.  Simple Transmission Line

3.2.1.  Analysis of a Transmission Line

The simplest structure for GEMCAP to analyse is a single microstrip transmission line. 

GEMCAP can process a file containing a physical description of the line to create a file that 

contains an electrical equivalent circuit of the line.

As a first example, assume that a line of width 20 microns and length 500 microns on a 

GaAs substrate is to be analyzed. The GaAs substrate has a height of 100 microns, and a 

dielectric constant of 12.9. The gold metallization from which the transmission line is fab-

ricated is 2 microns thick, and has a resistance of .01 ohms per square. These parameters 

are representative of a typical line used on a MMIC. Figure 3.1 shows the input file that 

would be accepted by GEMCAP for eventual use with SuperCompact. The XSUB line 

describes the substrate. The XCON describes the conductor height and resistive losses. The 

WID line describes the width of the line(s), and the GAP line describes the spaces between 

them. Note that there is only one conductor in this system, so the information on the GAP 

line will be ignored. Further down in the file, there is a NUM statement that indicates the 

number of conductors in the system being simulated. The SEG statement indicates which 

nodes the conductor is connected to, and the conductor's length. The rest of the file is in 

standard SuperCompact notation.

When GEMCAP is run, it searches for a PROFILE file that sets various processing options. 

The PROFILE was configured to calculate the inductances with the closed-form equations 

described in Chapter 2.5.1. This file is described in Appendix C. If all other options are set 

to their default values, then the SuperCompact file shown in Figure 3.2 is produced. Notice 

that the SEG statement has been replaced with an equivalent circuit of the transmission line. 

The equivalent circuit is a simple pi type structure with a resistor in series with the inductor 

to simulate loss.

If the program is executed using the ICM technique to calculate the inductance, the answer 

is rather different. The series inductance for the same topology is .3704 nH rather than 
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* Substrate, Conductor and Line Dimensions
*
XSUB 12.9 100
XCON 2 .01
WID 20
GAP 10
*
* SuperCompact Data File
*
BLK
*
* Line Description
*
NUM 1
SEG 1 2 500
A:2POR 1 2
END
FREQ
STEP 1GHZ 10GHZ 1GHZ
END
 

Figure 3.13.  GEMCAP input file for a single microstrip line.

 BLK
*  1 CONDUCTOR GROUP WITH 20.0 UM WIDTH AND 10.0 UM GAP
IND   1 401 L    0.3344415NH
RES   2 401 R    0.2500000
CAP   1   0 C    0.0292985PF
CAP   2   0 C    0.0292985PF
*  1 CONDUCTOR GROUP WITH 20.0 UM WIDTH AND 10.0 UM GAP
A:2POR 1 2
END
FREQ
STEP 1GHZ 10GHZ 1GHZ
END
 

Figure 3.14.  GEMCAP output file for use with SuperCompact.
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.3344 nH. Table 3.1 shows the impedances and effective dielectric constants calculated 

from the inductance and capacitance matrices produced by GEMCAP for various line 

lengths. Values calculated by the transmission line analyser in SuperCompact are also tab-

ulated. From this table, it is apparent that the ICM technique and, for long lines, the closed-

form equations agree well with SuperCompact. The predicted inductance of shorter lines 

calculated with the closed-form equations is less than with the other techniques. The capac-

itance matrix for all four GEMCAP runs is identical. This difference is due to the shortness 

of the line with respect to the substrate height.

Traditional transmission line theory assumes that the transmission line is infinitely long. 

When the capacitance matrices are calculated in the ICM solution of the inductance matrix, 

capacitance fringing effects at the line ends are ignored; the electric field is assumed to have 

no component in the direction of propagation. In order to determine the inductance from 

the capacitance matrix, both the electric and magnetic fields are assumed to have no z com-

ponent (the TEM assumption). These assumptions are reasonable as long as the cross sec-

tional area in which the field is confined is small compared to the length of the line. In the 

case of a microstrip line, the line length must be much greater than the substrate thickness. 

This is clearly not true for many MMICs. GaAs MMICs are made on substrates with thick-

nesses from 100 um to over 500 um, and overall chip sizes are often only 2000 um. Line 

length to substrate height ratios can be much less than unity.

If the standard (ICM) solution for the inductance is applied to such a problem, one should 

find that the measured inductance is lower than predictions. To see why, assume that a con-

Simulator               

GEMCAP (Closed-Form)
GEMCAP (Closed-Form)
GEMCAP (Closed-Form)
GEMCAP (ICM)
SuperCompact

Length

200 um
500 um
50000 um
any 
any

Impedance

70.8 Ohms
75.5 Ohms
79.5 Ohms
79.6 Ohms
79.2 Ohms

εeff

6.17
7.05 
7.81
7.79
7.81

Table 3.1
Simulated Impedances and Effective Dielectric Constants for Transmission Lines
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ductor is divided into pieces, each of which is h long, where h is the substrate height, as 

shown in Figure 3.3(a). The ground plane has a shielding effect such that conductors more 

than roughly 3h apart have negligible mutual inductance. On a long line, such as the one in 

Figure 3.3(b), virtually every segment is mutually coupled to 6 other segments, and this 

coupling acts to increase inductance per unit length. Segments that are farther apart have 

negligible mutual coupling. On smaller lines, many or all segments are coupled to fewer 

than 6 other segments, and the overall inductance per unit length is lower. This effect is pre-

dicted by (2.10) directly. Figure 3.4 shows inductance of a 20 um wide conductor over a 

100 um thick substrate for various conductor lengths as predicted with the closed-form 

expressions. Also shown is the inductance that would be calculated by the ICM technique, 

which is exactly proportional to the length. Notice that the closed-form inductance appears 

to be offset from the ICM inductance by a fixed amount. At very long lengths, the two lines 

converge, as the offset becomes negligible compared to the length. Similar curves have 

been published previously [22]. These curves suggest that it might be possible to correct 

inductances calculated through the ICM technique by shortening the line by a fixed length.

The return path inductance also tends to make the inductance calculated with closed-form 

expressions low. As was mentioned in Chapter 2.5, the closed-form expressions calculate 

only the inductance of the line on the top surface of the microstrip, not the return path. This 

error is expected to be largest for short lines.

Figure 3.15.  Comparison between a short line and a long line. Notice that the shielding 
effect of the ground plane prevents opposite ends of the line from coupling.
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3.2.2.  Experimental Verification of the Transmission Line Models

Several experiments were performed to try to verify these effects. It was expected that short 

lines (lines that have a length comparable to the substrate height) would have lower self 

inductance per unit length than longer lines, and that the closed-form expressions would be 

more accurate for short lines. The 1-port s-parameters of .125 inch wide lines on a .25 inch 

alumina substrate (εr = 9.9) with lengths of .5 inch, 1 inch, 1.5 inch, and 2 inch were mea-

sured. The far end of the line was shorted to the back-side ground plane with a wrap-around 

ground, as shown in Figure 3.5. The measurements were done from 150 MHz to 2 GHz. 

The experimental results along with simulated results from GEMCAP using both tech-

niques and SuperCompact are shown in Figure 3.6. The GEMCAP (using ICM technique) 

100000100001000100101
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1
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Length, um

Figure 3.16.  Inductance vs. length calculated with closed form expressions, and the ICM 
technique.



44
solution, and SuperCompact both predict constant inductance per unit length, as expected. 

The closed-form expressions predict increasing inductance per unit length for longer lines. 

The measurements suggest slightly decreasing inductance per unit length for longer lines. 

This series of experiments highlighted one of the problems with such experiments: any 

error in the position of the reference plane will change the slope of the curve. A 1 degree 

error in the position of the reference plane makes the measured results almost constant with 

respect to length. Because of uncertainties in calibration standards, and the wrap-around 

ground, 1 degree of accuracy was not achieved.

A second, similar, experiment was performed in a more controlled manner to try to resolve 

the discrepancies. The .25 inch substrate was difficult to work with, so air dielectric was 

used. In order to avoid the effect of wide lines, a 10 mil diameter wire approximating a fil-

amentary conductor, was used instead of a flat stripline. The wire was suspended .25 inches 

over a ground plane by an SMA connector on one end and a grounded copper plate on the 

other. The one-port s-parameters were measured at 150 MHz for wire lengths of .2 to 1.0 

inches. Special calibration standards were made from SMA connectors to avoid problems 

with the reference plane uncertainty. The graph of inductance vs line length is shown in 

.25" alumina substrate

Copper ground plane

SMA Connector

Wrap-around 

ground

.125" wide copper microstrip

Figure 3.17.  Basic microstrip one-port test fixture.
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Figure 3.7. Simulations using the closed-form equations suggested that the line would inter-

sect the length axis at roughly .05 inches because of the short line effect. When a straight 

line is fitted to the measured data, the line extends almost exactly to the origin. (Note that 

if a 50 inch long line is simulated with closed-form equations, it does closely match extrap-

olated measured results.) A simulation using GEMCAP with the ICM option matches mea-

sured results quite well. The above experiment was repeated, but the end ground plate was 

replaced with another SMA connector, and two-port s-parameters were measured. Similar 

results were seen.

Two reasons for the disagreement have been investigated. In all of the above experiments, 

the current is returned from the end of the line by a wrap-around ground and the ground 

plane, both of which add extra inductance. If the effect of the ground plane inductance 
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Figure 3.18.  Simulated and measured angle of S11 at 300 MHz for microstrip test fixture, 
Figure 3.5.
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became more significant for short lengths of line, then enough line inductance might be 

added to account for the discrepancy. However, the most likely reason for the disagreement 

appears to be the effect of current induced into structures supporting the ends of the wire.

All measurements were made by placing the short transmission line between 2 planes (with 

the line perpendicular to both planes). One or both of the planes held an SMA conductor. 

These planes will have the same effect as the ground plane described in Chapter 2.5; the 

perpendicular component of the time varying H field must vanish at the conducting plane. 

When the ICM solution is performed, this condition is automatically satisfied as TEM 

waves are assumed to propagate, and by definition, a TEM wave will have no components 

perpendicular to the end plates. (Note that although the ICM solution seems to solve the 
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0

10

20

30

40

50

60

CF

Meas

ICM

Length, Inches

H=.25 inches

Wire: #30 (10 mil diameter)

Figure 3.19.  Measured and simulated inductance vs. length for a filamentary conductor .25 
inches over a ground plane.
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problem elegantly, it is inherently wrong, as current must flow perpendicular to the wire at 

the end. Any flow of current along one of the end plates will set up a perpendicular compo-

nent to the magnetic field, which must be cancelled out by the electromagnetic wave 

impinging on the plate. Therefore, the wave is no longer TEM, and the ICM solution 

becomes invalid. The ICM solution is valid for long wires, as these end effects become a 

negligible part of the total inductance.) The closed-form solutions do not make any assump-

tions about the z- component of the magnetic field. The fact that the closed-form equations 

predict coupling between colinear lines (from (2.16)) indicates that there certainly is a z-

component to the magnetic field. That being the case, the boundary conditions at the end 

plate must be satisfied. The simplest way to do this is to assume the existence of an image 

conductor colinear with the transmission line on the opposite side of the end plate. The 

direction of the current in this line is in the same direction as the current in the main line in 

order to cancel the perpendicular component of the magnetic field. In other words, the con-

ductor is assumed to extend out, making it look more like an infinite conductor (which 

would support a TEM wave). Once again, this effect will be most noticeable on short lines 

where the centre to centre distance of the main line and its image is small compared to the 

ground plane height. Long lines are shielded by the ground plane so that the image conduc-

tor has little effect.

This theory has great ramifications on the experimental proof of the short line effects. If the 

end plates are made large, the image inductance must be taken into account, making the self 

inductance look larger, thereby masking the desired effects. If the end plates are made 

small, they will introduce significant inductance in series with the desired inductance, again 

masking the true self inductance.

To prove this theory, a third experiment was performed. In this experiment, the entire circuit 

is above a ground plane, and the ground plane does not form part of the circuit. The image 

current effects were reduced by eliminating one end plate, but the other end plate, the con-

nector flange, could not be removed. Figure 3.8 illustrates the apparatus. The circuit is 

formed by a rectangular loop of 10 mil diameter wire. The width of the rectangle is fixed 

at .25 inches, and the length is varied from .25 to 1.0 inches.
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The GEMCAP simulation of this circuit is more complicated than the previous examples. 

The GEMCAP equivalent circuit is shown in Figure 3.9. The mutual inductance between 

the parallel legs of the loop, and between the loop and the image conductors had to be con-

sidered. Note that current controlled current sources force the image inductors to have the 

same current as the main mesh. 

Figure 3.10 shows the predicted and measured inductance of a .25, .5, .75, and 1 inch long 

loops. The closed-form equations with the image inductances included agree well with the 

measurement. The image inductor correction was not applied to the ICM solution, because 

this solution assumes that a TEM wave propagates, and therefore the boundary conditions 

are satisfied. If the corrections are applied, the ICM technique yields even less accurate 

answers.

From these experiments, one can conclude that the inductance of a short length of line that 

does not form a closed path can not be directly measured. However, the closed-form equa-

tions can be verified by looking at closed paths, and taking into account some of the second-

Figure 3.20.  A simple loop over a ground plane.
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order effects. When these corrections are properly applied, the closed-form equations yield 

correct results, and the hypothesis that the inductance per unit length of a transmission line 

decreases for short lines is confirmed.

3.2.3.  Transmission Line Loss Calculations

In the example in Figure 3.2, loss was modelled as a constant resistance in series with the 

inductive element. The resistance can be made frequency dependent to model the skin 

effect by enabling that option in the profile. The resistance of the resistor is calculated with 

(2.21). In order to create a frequency dependent resistor, an undocumented feature in Super-

Compact must be used. The variable “F” is set by SuperCompact to the analysis frequency. 

The dispersive resistor call for Figure 3.2 is shown in Figure 3.11.

Figure 3.21.  Equivalent circuit used to simulate the loop, with the effect of the image in the 
connector plane.
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At microwave frequencies, most of the current tends to flow along the edges of a conductor 

as a result of the skin effect. This can be illustrated with GEMCAP by breaking a wide con-

ductor into many narrow pieces. In the example shown in Figure 3.12, the 20 um wide trans-

mission line is broken into twenty sub-segments, each of width 1 um.The mutual 

inductance of every segment to every other segment is considered. To simplify the calcula-

tion, the capacitance to ground is ignored. The transmission line is driven by a high-fre-
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Figure 3.22.  Angle of reflection coefficient (which can be related to the inductance) versus 
loop length, measured and simulated.

RES   2 401 R
+ (.25000E+00*(1+.40623E-01*(.50264E-08*F)**(.82023-.39479E-12*F)))

Figure 3.23.  Frequency dependent resistor in SuperCompact.



51
quency ideal current source, and the current in each sub-segment is monitored. Figure 3.13 

shows the current density (in amperes per micron) as a function of the distance from the 

edge of the transmission line. At low frequencies, the current is uniformly distributed along 

the width of the line. Above roughly 1 GHz, the current tends to accumulate along the edge 

of the line. Notice that this distribution is different from the charge distribution calculated 

in the MOM capacitance solution, as the current density distribution is highly frequency 

dependent. The effective AC resistance is calculated by dividing the voltage drop across the 

lines by the value of the current source. The predicted AC resistance of the segmented line 

increases with frequency.  The AC resistance of a 20 um wide, 2 um thick, 500 um long 

gold conductor is plotted in Figure 3.14. The loss has increased by a factor of two over the 

DC value at 18 GHz. Note that the value of AC resistance from the segmented conductor 

simulation assumes that the current is uniform along any vertical line through the conduc-

tor. Pettenpaul [30] has calculated the AC resistance of a conductor with the skin effect 

taken into account on all four sides. This resistance is also plotted in Figure 3.14. This resis-

tance is higher at high frequencies than the value calculated by segmenting conductors 

Figure 3.24.  In order to determine the current distribution in a microstrip line, the line can 
be analysed as 20 parallel coupled microstrips that are connected in parallel.

20 
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um

.01 um 
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because of the skin effect on the thickness of the conductor, and because of the finite width 

of the segments in the segmented conductor simulation.

Very small MMIC conductors (with dimensions similar to the skin depth) will have uniform 

current flow through the cross-sectional area of the conductor. This implies that the loss of 

the conductor will be proportional to the area of the conductor. The surface roughness and 

the grain structure of the metal can have dimensions that are starting to be a significant frac-

tion of the metal thickness, so these effects have a large effect on MMIC losses. 

20100
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4 GHz
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Position from edge of line, um

Figure 3.25.  Simulated current distribution across a microstrip.
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Figure 3.26.  RF resistance of a 500 um length of microstrip line as calculated 3 different 
ways.
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3.3.  Coupled lines

In the preceding section, it was discovered that very few circuit elements can be considered 

using self inductance only. In fact, mutual inductance had to be used to explain the perfor-

mance of the small inductive ring, and the skin effect demonstration circuit. The accuracy 

of mutual inductance calculations is crucial even for single port devices. 

Many of the short line effects that were observed with the self inductance are also evident 

in mutual inductance. It is interesting to compare the inductance predictions of conven-

tional transmission line theory and the ICM technique, with Grover's closed-form equa-

tions. For tightly coupled lines (lines where the gap between lines is smaller than the 

substrate height), the per unit length mutual inductance is constant for very long lines, but 

reduces when the line length approaches the height of the substrate. This effect is barely 

noticeable, as the close coupling masks the coupling from line ends. It only becomes notice-

able when the line length is further reduced to be comparable to the gap, but this configu-

ration is completely dominated by end effects and can not be solved using these techniques. 

For lightly coupled lines (lines where the gap is more than twice the substrate height), the 

per unit length mutual inductance is constant for long lines, but reduces when the line 

length approaches or falls below the gap width. In other words, classical transmission line 

theory fails when either the gap or the substrate height becomes a significant fraction of the 

line length. The reason for this reduction is the same as for the reduction in self inductance: 

in a long line, there is insignificant coupling between opposite ends of the line, so adding 

length does not change coupling per unit length. In a short line, there is coupling between 

opposite line ends so that increasing length adds a disproportionate amount of mutual 

inductance. As was the case with self inductance, Grover's closed-form equations predict 

the short line effects, and the ICM technique does not.

3.3.1.  Coupled Line Measurement

It would be reassuring to measure the mutual inductance for lightly coupled conductors to 

verify this theory. This measurement is a difficult one, as the small coupling is easily 

masked by leakage inductance and capacitance. Several attempts were made to experimen-
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tally measure the reduction in mutual inductance for short coupled lines, as was done for 

short transmission lines in Chapter 3.2. The configuration of the first attempt is shown in 

Figure 3.15. Two loops of 10 mil diameter wire were placed next to each other .25 inches 

above a ground plane. Most of the coupling between the loops occurs between the two par-

allel, adjacent lines separated by a .5 inch space. (A similar geometry employing a .25 inch 

thick ceramic substrate was employed, but the extra capacitive effects made the results dif-

ficult to interpret.) The measured S21 of this structure was compared to the S21 calculated 

by GEMCAP. The peak of the measured results matched the peak calculated by the ICM 

technique to within 2 dB, but at low frequencies (where very little coupling was predicted), 

measured coupling was more than 10 dB higher. The agreement with predictions made with 

closed-form equations was much worse. The predicted peak coupling was low by 12 dB. 

The reasons for these discrepancies are not known, although there may be coupling via the 

ground plane. This is elaborated on in the next paragraph. These measurements were dis-

Figure 3.27.  Two loops suspended over a ground plane.
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turbing, because they indicated either that there was a large amount of stray coupling in the 

experimental set-up, or that, contrary to Grover [22], the closed-form equations fail to work 

for short line lengths.

A second test was done to try to measure mutual inductance directly. A high frequency 

current source was used to drive one of a pair of coupled lines while the voltage induced 

across the other line was measured. The ratio of the induced voltage to the current yields 

the mutual reactance, from which the mutual inductance can be determined directly. The 

test was done with long lines (22 cm long) at low frequency (5 MHz) so that dimensions 

could be measured easily, and parasitics could be controlled. The test was difficult, how-

ever, because lightly coupled structures were to be analyzed. An output voltage swing on 

the order of 2 mV p-p was expected for a current of 0.2 A p-p. Any leakage from the input 

to the output would mask the desired response. To minimize leakage, half-inch nickel 

plated steel plates were used as the ground plane and as a shield between the two halves of 

the test as shown in Figure 3.17. The thickness of the plates was necessitated by the large 

skin depth at 5 MHz, although .5 inch plates were far more than adequate.

The results of the testing were interesting, if not conclusive. When the lines were spaced by 

8.7 cm, .625 cm over the ground plane, a voltage of 10 mV p-p was induced in the second 

wire. This voltage is approximately what the ICM technique predicts, but is 50% higher 

than the closed-form predictions. When the height was reduced to .1 cm over the ground 

plane, the induced voltage decreased to 5 mV, roughly as expected. When the height was 

reduced to 0 cm over the ground plane (i.e.: when the wire was taped to the steel plate so 

that only the wire's insulation separated it from the plate), the induced voltage increased to 

11 mV, a completely unexpected result. One would have expected the overall mutual cou-

pling to vanish, as the mutual coupling to the image inductance cancels the main mutual 

coupling. In fact, even if the wires were mounted entirely under the ground plane, a sizeable 

voltage was induced. This phenomenon was not electrostatic in nature, as it only occurred 

when the circuits at both ends were closed. The coupling was due to the non-ideal nature 

of the ground plane. The steel plate caused the current induced by the source wire to spread, 

and much of this spreading contributed to mutual inductance. Also, the magnetic perme-

ability of the plate may act like the iron core of a transformer, providing magnetic coupling. 



57
The mutual inductance due to this spreading is of the same phase as the desired mutual 

inductance. This experiment indicates a non-ideal ground plane may be a limitation to most 

transmission line models now in common use (ICM, closed-form, and conventional).

The results of this test with the wire elevated above the ground plane are summarized in 

Table 3.2. The predicted inductance values do not include the effect of the two .625 cm or 

2.54 cm lines that support the 22 cm line, so 5% or 20% (respectively) should be added to 

the predicted values in Table 3.2. One can see from these results that measurements do start 

to deviate from the conventional (ICM) predictions in extreme cases. The fact that the mea-

sured results do not agree exactly with either equation may be due to the other stray cou-

pling caused by the ground plane.

To Oscilloscope

To AC 

Source

Steel ground planes

Parallel wire loops

H

Figure 3.28.  Apparatus for making measurements of mutual inductance between parallel 
conductors.
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Direct verification of the mutual inductance calculations remains elusive. Indirect verifica-

tion has been done by analysing real circuits and comparing the results obtained with the 

closed-form equations to those obtained with the ICM technique. The elements analysed in 

the following sections indicate that either technique can be used in many circuits, and care 

needs to be taken only when circuits are much shorter than the substrate height. When the 

length of the line is comparable to or less than the substrate height, the closed form expres-

sions have proven to be more accurate. At long line lengths, either technique i

s suitable, although long, closely coupled lines simulated with the ICM technique agree 

better with measured data.

1.74
0.50
1.98
0.85
0.47

1.17
0.25
0.97
0.31
0.14

1.85
0.56
1.66
0.56
0.26

.625

.625
2.54
2.54
2.54

8.7
16.5
16.5
25.5
34.5

Gap
cm

Mutual L
 (Closed-
Form) nH

Mutual L
(ICM)    nH

Mutual L
(Meas.)  nH

Height
cm

Table 3.2
 Measured and predicted mutual inductances of lightly coupled lines. 

All lines were 22cm long, .25mm diameter, and the measurement frequency was 5 MHz.
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3.4.  Inductors

3.4.1.  Single Inductors

The next class of circuit element to be investigated will be the rectangular spiral inductor, 

similar to the one shown in Figure 1.1. This inductor can be analyzed using a series of trans-

mission lines mutually coupled to each other. The first inductor to be analyzed will be a 

2.75 turn, 1.2 nH nominal inductance unit, fabricated with gold air-bridges, 10 um wide 

with a 20 um pitch, on a 175 um GaAs substrate. This inductor is part of the TriQuint stan-

dard cell library, and has been measured and modelled by them [31]. Its dimensions are 

shown in Figure 3.17.

This element was modelled using the closed-form inductor equations in GEMCAP since 

the lines are short relative to the substrate height, and the ground plane does not form part 

of the return path. The GEMCAP input file that is used to simulate the inductor is shown in 

Figure 3.29.  Layout of a 1.2 nH monolithic inductor. The inductor is held over the surface 
of the GaAs by posts at the corners.

160um

160um

L1200 Layout

10 um lines and gaps
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Figure 3.18. The resulting file was simulated in SuperCompact, and the results are shown 

in Figure 3.19. The coil was simulated as a one-port with the centre terminal connected to 

ground. Also plotted in Figure 3.19 is the reflection coefficient measured by TriQuint using 

coplanar wafer probes. The angle of the reflection coefficient of an inductor is a good indi-

cation of its inductance. The inductance of an ideal inductor is related to the angle of the 

reflection coefficient by (3.1) and (3.2).

Figure 3.30.  GEMCAP input file for the inductor shown in Figure 3.17.

* INPUT FILE FOR A TEKTRONIX 1200PH INDUCTOR ON A 7 MIL SUB.*
BLK
XSUB 12.9 175
XCON 1 .04
WID 10  10  10  10  10  10
GAP   10  10  60  10  10
NUM  6
SEG 1 2 150
SEG 5 6 130
SEG 9 10 90
SEG 12 11 70
SEG 8 7 110
SEG 4 3 150
GAP 10 10 80 10
NUM 5
SEG 2 3 150
SEG 6 7 110
SEG 10 11 70
SEG 9 8 90
SEG 5 4 130
A:2POR 1 12
END
FREQ
STEP 2GHZ 18GHZ 1GHZ
END
OUT
PRI A S
END
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(3.1)

(3.2)

where Z is the system impedance, L is the inductance, and ω is the angular frequency. GEM-

CAP's prediction of the angle of S11 is low by about 4 degrees at 5 GHz which is an error 

in inductance of less than 6%. The measured loss of the inductor is higher than the predic-

tion. In fact, the measured reflection coefficient increases up to roughly 13 GHz, and then 

decreases. The simulated reflection coefficient increases monotonicaly up to at least 

18 GHz, which is what would be expect for a simple series L R model of an inductor. The 

error may be caused by the porous nature of plated gold. Other factors that might increase 

Figure 3.31.  Simulated (solid line) and measured (broken line) S11 from 2 GHz to 18 GHz 
for the 1.2 nH inductor in Figure 3.17. Simulation was performed using GEMCAP with the 
closed form expressions for inductance. Markers A, B, and C are at 5 GHz, 10 GHz, and 
15 GHz.
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the loss could include dielectric loss and radiation. Dielectric loss was investigated as a pos-

sibility, but the loss tangent of the dielectric would have to be increased to roughly 0.1, 

which is an unreasonable figure for GaAs. This underestimation of loss is a common 

problem in GaAs circuitry, and it can be seen in many other devices. More work needs to 

be done in the area of loss simulation with attention paid to non-ideal metals, skin effect, 

surface roughness, and other second order effects.

When GEMCAP is run with the ICM option for the calculation of the inductance matrix, 

the phase of the reflection coefficient is about 11 degrees lower than the measured value. 

This supports the theory that short lines are modelled with more accuracy with the closed-

form expressions. It is interesting to examine the effect of the various elements in the induc-

tance calculation. Table 3.3 summarizes the effects tested.

-

21.4

0.5

-4.1

4.1

4.3

-11.4

Error in S11 
angle 
degrees.

101.0

122.4

101.5

96.9

105.1

105.3

89.6

Angle of S11 
@ 5GHz

Actual measured value [31]

Simulation ignoring all mutual inductance.

As above, but adding mutual inductance from 
adjacent neighbours.

As above, but including mutual inductance from 
every segment on each side.

As above but with mutual inductance from 
opposite side included.

As above, but with the ground plane image 
inductance added. (A full simulation) 

Use ICM solution

Inductance calculation technique

Table 3.3.
 Simulated and measured angle of S11 under various analysis assumptions.
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These simulations indicate that the ground plane has relatively little effect on the induc-

tance of this inductor. This inductor is small, and was fabricated on a rather thick substrate, 

so the image inductor is actually much further away than the adjacent sides. Furthermore, 

the image inductor acts to increase mutual inductance from one side of the coil to the other, 

and to decrease the self inductance of all sides. As these two effects tend to cancel, the net 

effect of the image inductor is small. The capacitive and inductive coupling between oppo-

site sides of the coil has a significant effect on the inductance. This coupling reduces the 

overall self inductance of the coil by 10%. The mutual inductance between non-adjacent 

conductors on the same side of the coil acts to increase self inductance by 10%. The mutual 

inductance between adjacent conductors is a very significant effect, accounting for 20% of 

the overall inductance. From this, we can conclude that this inductor has about 20% more 

inductance than the sum of the inductances of the segments. If the inductor were to be 

unwound and stretched out, the long line would have more inductance per unit length than 

the segments, and it would have as much inductance as the inductor did. Inductors do offer 

a space advantage over transmission lines, but there is little performance advantage.

The principal reason that the phase is not being accurately estimated is likely the air-bridge 

structure used to fabricate the inductor. There is approximately 1.5 microns of air between 

most of the metallization and the surface of the wafer. This air gap lowers the effective 

dielectric constant slightly, and reduces coplanar capacitance compared to the computer 

predictions (GEMCAP assumes that the dielectric under the inductor is uniform). As the 

capacitance causes the inductor to resonate, the reduction in capacitance will increase the 

angle of S11 around resonance, yielding the measured results.

3.4.2.  Coupled Inductors.

As a second test of the program, a 2.57 nH inductor from the Harris GaAs foundry library 

[32] will be examined. This inductor is fabricated on 125 um thick GaAs in 3 um thick gold 

metal. Unlike the TriQuint inductors, the metal is placed directly on the GaAs surface. The 

2.57 nH inductor has 4.5 turns, and its overall dimensions are 225 um by 250 um. A model 

has been supplied by Harris, and test cells employing these inductors have been measured 

with a network analyser. This modelling effort is complicated by the fact that there is a 
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second inductor located next to the measured inductor, as shown in Figure 3.20. The second 

inductor introduces a resonance in the reflection coefficient of the first inductor. GEMCAP 

can be used to determine both the characteristics of the inductors, and the coupling between 

the two inductors.

A single inductor was modelled using GEMCAP with the closed-form expressions for 

inductance. Exactly the same profile file was used as in the example earlier in this chapter. 

The effect of the interaction between opposite sides of the inductor was included. The 

resulting data file was run on SuperCompact. The magnitude and angle of the reflection 

coefficient of the inductor as a one-port is shown in Figure 3.21, along with data supplied 

by Harris. The angle of the reflection coefficient agrees extremely well with GEMCAP's 

predictions, being within 2 degrees at 18 GHz. The magnitude of the reflection coefficient 

does not agree as well for two reasons. The gold in the Harris process is deposited with an 

electroplating process, and electroplated metal tends to have higher loss than bulk gold. The 

Figure 3.32.  Layout of a pair of 2.6 nH inductors.
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match between modelled and measured results is especially bad at low frequencies. This is 

because the Harris model has no mechanism for including the loss due to skin effect. In 

order to get a good fit to measured data at high frequencies, Harris has added loss beyond 

the DC resistance, making the inductor's loss at low frequencies unreasonably high.

In order to verify the Harris model, the inductors were measured using coplanar waveguide 

wafer probes. At 11 GHz, there is significant interaction between the inductors; when one 

inductor is left open, the other inductor exhibits noticeably higher return loss. The interac-

tion between these inductors can be modelled with GEMCAP. To keep the circuit size man-

ageable, the mutual inductance from opposite sides of each inductor is ignored. The mutual 

inductance between all segments in the adjacent sides of the two inductors is modelled, 

however. The resulting circuit file is too large to be run in SuperCompact. Instead, the file 

was simulated in Scamper, and the results were transferred to SuperCompact in the form of 

a two-port s-parameter data file.

The measured and modelled reflection coefficients of one inductor with the second inductor 

open-circuited are shown in Figure 3.22. The second inductor causes a high Q peak in the 

return loss of the measured inductor at 11 GHz, which coincides with the self resonant fre-

quency of the inductor. Notice the good agreement between theory and measurement at all 

points including the area where there is interaction between the inductors. Also notice the 

improved agreement in return loss. The agreement could likely be improved if the coupling 

between opposite sides of the inductors was included.    

When the second inductor is terminated in 50 ohms, the behavior of the system is more 

benign. Figure 3.23 shows the one-port s-parameters of the inductor with the second port 

terminated in 50 ohms. The return loss is greater than the case where the inductor was iso-

lated because of the energy coupled into the second inductor. The plot of S21, describing 

the interaction between the inductors, is shown in Figure 3.24. The flat nature of this cou-

pling is remarkable considering the high Q peak visible in Figure 3.22.        

The ability of this program to analyse the interaction between inductors will enable design-

ers to evaluate compact circuit topologies quickly and efficiently. No other program, other 
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Figure 3.33.  Magnitude and phase of reflection coefficient of an isolated 2.6 nH inductor. 
The solid line is the simulated (with GEMCAP) result, and the broken line is generated 
from the model supplied by Harris.
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Figure 3.34.  Magnitude and phase of reflection coefficient of a 2.6 nH inductor next to a 
similar unconnected inductor, as seen in Figure 3.20. The solid line is the simulated (with 
GEMCAP) result, and the broken line is measured.
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Figure 3.35.  Magnitude and phase of reflection coefficient of a 2.6 nH inductor next to a 
similar inductor terminated with 50 ohms. The solid line is the simulated (with GEMCAP) 
result, and the broken line is measured.
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than cumbersome field theoretical algorithms, has been able to do this. To aid the MMIC 

designer, Figure 3.25 illustrates the coupling (S21 in a 50 ohm system) versus spacing for 

various 2 and 4 turn inductors on 125 um and 500 um substrates. The inductors had outside 

dimensions of 200 um or 400 um, and had 10 um wide lines, and 5 um wide gaps. The 

winding that ends in the centre was grounded. These graphs were calculated with 

GEMCAP. Close inductors on either substrate have similar S21, but the S21 drops off more 

rapidly with distance on a thin substrate. This proves that the ground plane provides shield-

ing between the inductors. Notice that the size of the inductor has little bearing on the 

amount of coupling. If the inductors are simulated in higher impedance systems, the cou-

pling becomes more of a potential problem. The 4 turn, 200 um square inductors on 125 um 

substrate, spaced at 10 um has -10 dB peak S21 in a 200 ohm system, and -5 dB in a 500 

ohm system. Fortunately, the inductive reactance of the inductors at that frequency is quite 

low, and their use in such a system is unlikely. 

Figure 3.36.  S21 of the coupled inductors shown in Figure 3.20. The solid line is the sim-
ulated (with GEMCAP) result, and the broken line is measured.
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The graphs in Figure 3.25 can be used as a guideline to inductor placement, but if space 

becomes critical, the pair of inductors should be simulated in their entirety.                 
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Figure 3.37a and b. Simulated coupling between pairs of identical four turn inductors 
located next to each other in a 50 ohm system. On each graph, the lines are for 10, 20, 40, 
80, and 160 micron spacing (top to bottom) between inductors. Substrate height is 125 
microns. Overall dimensions are 200 microns (upper trace) and 400 microns (lower trace).
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Figure 3.25c and d. Simulated coupling between pairs of identical two turn inductors 
located next to each other in a 50 ohm system. On each graph, the lines are for 10, 20, 40, 
80, and 160 micron spacing between inductors. Substrate height is 125 microns. Overall 
dimensions are 200 microns (upper trace) and 400 microns (lower trace).
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Figure 3.25e and f. Simulated coupling between pairs of identical two turn inductors 
located next to each other in a 50 ohm system. On each graph, the lines are for 10, 20, 40, 
80, and 160 micron spacing between inductors. Substrate height is 500 microns. Overall 
dimensions are 200 microns (upper trace) and 400 microns (lower trace).
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Figure 3.25g and h. Simulated coupling between pairs of identical four turn inductors 
located next to each other in a 50 ohm system. On each graph, the lines are for 10, 20, 40, 
80, and 160 micron spacing between inductors. Substrate height is 500 microns. Overall 
dimensions are 200 microns (upper trace) and 400 microns (lower trace).
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3.5.  Lange Couplers

GEMCAP can be used to analyse linear coupled line structures. This section will illustrate 

the use of GEMCAP in the analysis of a Lange coupler. This Lange coupler was fabricated 

on GaAs, and its performance has been published [33].

Since the coupler is a quarter wavelength long at mid-band, it could not be analyzed in 

single sections. To insure sufficient accuracy up to 8 GHz (where the coupler would be 

about half a wavelength long), at least 4 sections would be required. To test the capabilities 

of the simulator on a complex circuit, the coupler was broken into 6 sections along its 

length; three to the right of the centre air-bridge connections, and three to the left. The 

circuit topology that was used is shown in Figure 2.12. The resulting file was too big to be 

analyzed with SuperCompact, so Scamper was used.

When the ICM technique was used to calculate the inductive coupling, excellent agreement 

with the published results was obtained, as shown in Figure 3.26. The coupler is slightly 

over-coupled. When the closed-form equations are used in the simulation, 0.5 dB more 

over-coupling is predicted. The large difference between the two techniques resulted 

because of the thick (4 um) metallization used for the coupler. The closed-form equations 

take metal thickness into account in the inductance calculation, but the ICM technique does 

not. The self inductance of the conductors, as predicted by the closed-form equations, is 

lower than that by the ICM technique, so the coupling coefficient is higher. The inductance 

is underestimated by the closed-form equations, however, because of the assumption that 

current is flowing uniformly throughout the cross-sectional area of the conductor. In fact, 

at 6 GHz, the skin effect will cause most of the current to flow on the surface of the con-

ductor, and particularly on the surface closest to the ground plane. This causes the closed-

form predicted self inductance to be lower than actuality, and the closed-form predicted 

coupling higher. (Note that GEMCAP corrects the loss calculations for the skin effect, but 

does not correct inductance calculations for skin effect.) If the conductor height is reduced 

to 1um, ICM and closed-form calculations yield similar results. The fact that GEMCAP can 

model a Lange coupler proves the usefulness of this technique for distributed structures.
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Figure 3.38.  Measured (broken line) and simulated (solid line) Lange coupler using ICM 
tech. Upper traces are the through port.

Figure 0.1.  Measured (broken line) and simulated (solid line) Lange coupler simulated 
with closed form inductance calculations. Upper traces are the through port, and lower 
traces are the coupled port.
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SuperCompact was also used to simulate the Lange coupler. Surprisingly, its predictions 

were even less accurate than either of the GEMCAP predictions. SuperCompact predicted 

0.9 dB of overcoupling, with incorrect centre frequency.
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3.6.  Conclusions

The varying characteristics of the two different ways to calculate the inductance matrix 

stimulated efforts to determine which is most useful. In comparing simulations done both 

ways to measured data, it was observed that the closed-form techniques tended to give more 

accurate simulations for devices made of short elements, such as MMIC spiral inductors, 

and that the ICM technique lead to more accurate answers for longer lines, especially if they 

are close.

The measurements done in this chapter indicate that for large microstrip structures, the 

closed-form expressions predict inductance less accurately than the ICM method. The 

reason for these results appears to be the return path. As Grover's formula [23] is based on 

the Biot-Savart law, the current's return path is assumed to be at infinity. This is similar to 

analysing hypothetical current sources and sinks, separated by a finite distance, connected 

by a wire over a ground plane. The ground plane, even if it is of infinite extent, will have 

some inductance associated with it. The ICM formulation will take into account the induc-

tance of the return path (at least the return path parallel to the microstrip). In order to 

improve the accuracy of the closed-form inductance equations, there is a need to calculate 

the inductance of the ground plane. Since the current in the ground plane will not be 

uniform or even unidirectional, this inductance will be difficult to calculate. Fortunately, in 

many cases, especially MMICs, the calculation of this inductance will be unnecessary, as 

the return path is not through the ground plane. Note that this additional inductance is not 

the same as the image inductance due to currents induced in the ground plane. The image 

inductance exists whether or not the ground plane forms part of the return path.

In conclusion, the most accurate inductance results will be achieved if careful consideration 

is given to which technique is most appropriate in a given situation. If there is a long return 

path through the backside metal, then the ICM technique should be used. If the elements 

are short (the same length as the substrate height or less) or if the ground plane does not 

form part of the circuit, the closed-form equations should be used.
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CHAPTER 4 

MONOLITHIC TRANSFORMER DESIGN AND MODELLING

4.1.  Introduction

This chapter will explore the design of spiral monolithic transformers using GEMCAP as 

a simulation tool. Published examples of monolithic transformers, and some monolithic 

transformers that have been designed by BNR and fabricated by GaAs foundries will be 

considered. The characteristics of these transformers will be examined and compared to 

discrete transformers. One of the most promising applications of monolithic transformers 

is their use in baluns. The special requirements of baluns will be discussed, and transform-

ers designed to meet these requirements will be presented.
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4.2.  Transformer Layout

A monolithic transformer in its most basic form consists of two inductors inter-wound to 

promote mutual inductance. Figure 4.1 shows several possible transformer layouts. The 

transformer shown in Figure 4.1a, which is a plan view of Figure 1.2, is basically an induc-

tor in which the single conductor has been split into two parallel conductors. This results in 

a transformer that has unequal primary and secondary self inductances. Both the primary 

and secondary windings have ends that terminate in the middle of the transformer, which 

may be inconvenient for layout. Figure 4.1b illustrates a transformer in which the primary 

and secondary self inductances are identical because of the inherent symmetry of the trans-

former. A transformer of this nature has been described in the literature [7]. Figure 4.1c 

illustrates a transformer in which all four terminals are brought to the outside, making inter-

connection to the rest of the circuit more straight-forward. Another advantage of transform-

ers of this design is that their symmetry allows the centre-tap position to be calculated 

exactly. Many other designs can be envisioned for special applications. Transformers can 

be made with more than two windings. Ratios other than 1:1 can be fabricated. For exam-

ple, Figure 4.2 shows designs for a 3:1 transformer, and a 3:2 transformer. If it is more con-

venient for layout purposes, rectangular, octagonal, or circular transformers could be made.     

Transformers are often used as two port devices, requiring that two of the transformers 

nodes be grounded. If the two grounded connections are wound in the same direction 

(clockwise, for example) then the transformer is said to be wired in a non-inverting config-

uration. Conversely, if the two grounded connections are wound in opposite directions, then 

the transformer is said to be in an inverting configuration. Windings that are wound in one 

of the two orientations are sometimes marked with a dot.
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4.3.  Analysis of a Basic Monolithic Transformer

GEMCAP was used to analyse a number of monolithic transformers. One of the few pub-

lished designs [7] was simulated with GEMCAP to establish its validity. This transformer 

is similar to the transformer shown in Figure 4.1b and measures 200 um square. The ends 

of the windings that are in the centre of the transformer are grounded. The input file for this 

transformer is shown in Figure 4.3. Coupling between opposite sides of the transformer was 

included. The measured and modelled coupling (S21) and return loss (S11) is shown in 

Figure 4.4. The agreement between measured S21 and GEMCAP is within .07 magnitude, 

and 5° angle. It is useful to examine the characteristics of this first monolithic transformer.      

Figure 4.4.  Simulated (solid line) and measured (broken line) S11 (upper pair) and S21 
(lower pair) of the Frlan transformer [7]. The simulated (narrow) response with both wind-
ings resonated with parallel capacitors is also shown.
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4.3.1.  Loss and Mismatch

The magnitude of S21 of the monolithic transformer reaches a maximum of about .5 or 

6 dB. This degree of transmission loss is quite poor, especially when compared to trans-

mission line transformers wound on ferrite cores, which may have a maximum S21 of about 

.1 dB in a 50 ohm system. The principal reason for this is the poor coupling factor 

observed in monolithic transformers, as the match (S11) is poor. The coupling can be 

improved over a narrow bandwidth by resonating out the self and part of the mutual cou-

Figure 4.3.  GEMCAP input file for Frlan transformer [7].

BLK
XSUB 9.8 250
XCON 1 .02
WID 10 10 10 10 10     10 10 10 10 10
GAP   10 10 10 10   70   10 10 10 10
NUM 10
SEG 4 10   206
SEG 21 20  175
SEG 31 30  136
SEG 41 40  100
SEG 51 18   42
SEG 17 63   42
SEG 52 53  100
SEG 42 43  136
SEG 32 33  175
SEG 22 3   206
NUM 10
SEG 2 4    100
SEG 22 21  190
SEG 32 31  151
SEG 42 41  121
SEG 52 51   81
SEG 63 40   81
SEG 53 30  121
SEG 43 20  151
SEG 33 10  190
SEG 3 1    100

TRL 1 19 W=72UM P=200UM SUB
TRL 2 29 W=71UM P=200UM SUB
TRL 17 18 W=10UM P=60UM SUB
TRL 17 36 W=10UM P=100UM SUB
TRL 18 37 W=10UM P=100UM SUB
TRL 36 0  W=72UM P=100UM SUB
TRL 37 0 W=72UM P=100UM SUB
A:2POR 19 29
END
FREQ
1MHZ
STEP 1GHZ 20GHZ 1GHZ
END
OUT
PRI  A  S
END
DATA
SUB: MS H=250UM ER=10
END
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pling with shunt or series tuning capacitors. Figure 4.4 shows the simulated S21 of the trans-

former with the primary and secondary windings resonated with capacitors, for optimum 

coupling at 3 GHz. Good coupling, -1.8 dB, is observed at the centre frequency, but the 

bandwidth is narrower. With the tuning, the return loss at both ports improves to better than 

-30 dB, so one can conclude that the 1.8 dB of loss is purely dissipative.

If one measures the resonant frequency of the primary, with the secondary open, one finds 

that the resonant frequency is much higher than the frequency at which maximum coupling 

occurs. The side-by-side coupled inductors that were examined in the last chapter had peak 

coupling when either inductor was self-resonant. The reason for the difference in behavior 

between the two systems is because of the nature of the coupling between the inductors. 

The coupling between the side-by-side inductors is principally inductive. The largest 

current flows through the inductor when it is excited at its resonant frequency, so the cou-

pling is largest at that frequency. The coupling between the windings of the transformer is 

due to both capacitance and inductance, so it behaves like a coupled line structure. The nulls 

depend on which end of the coupled arm of the coupler is grounded.

The other significant shortcoming associated with monolithic transformers is their high 

loss, even when tuned. The transformer described by Frlan [7], for example, had a simu-

lated dissipative loss of 1.8 dB, when tuned (Figure 4.4). This loss is very high, especially 

if the transformer is to be used at the input of a low noise circuit, or at the output of a high 

power circuit. This loss is entirely due to the conductor loss of the transformer windings. 

This loss can be reduced by widening the conductors, but only at the expense of reduced 

mutual coupling (if the gap is kept constant) or increased parasitic capacitance (if the con-

ductor centre to centre distance is kept constant). The loss could also be reduced by increas-

ing the thickness of the metallisation, up to the point where skin depth dominates metal loss 

behavior. The conductor thickness can not be arbitrarily increased without considering the 

extra difficulties with photolithography. Most processes use the thickest metal possible for 

the design rules; thicker metal can be used only if the either the process, the design rules, 

or the yield can be changed. Typical GaAs MMIC processes use gold metallisation thick-

nesses from 1.0 micron to 4.0 micron thick. If the gold conductors are increased to a thick-

ness of 5 skin depths in the above example (from 1.0 micron to 7.5 micron), the dissipative 
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loss would decrease to .25 dB. Although this loss is acceptable, this thickness of metal is 

not practical in most MMIC processes.

4.3.2.  Monolithic Transformers in Other Configurations

Some of the more interesting properties of monolithic transformers were not addressed in 

[7]. One of the main uses for transformers is in baluns. In a simple balun, two transformers 

are wired in opposite polarities, as shown in Figure 4.5. To achieve a perfect balance, the 

transformers must have the same performance whether they are used in inverting or non-

inverting mode. The characteristics of monolithic transformers in both configurations have 

never been published. The transformer in Figure 4.6 was measured both in the inverting and 

non-inverting cases, corresponding to each transformer in Figure 4.5. This transformer was 

designed at BNR, fabricated by TriQuint Semiconductor, and characterized at BNR with 

microwave coaxial wafer probes.        

The non-inverting measurement was made directly with coplanar waveguide probes. The 

measurement of the inverting configuration was done by breaking the air bridges in the 

ground ring surrounding the transformer, and wirebonding the centre pad of one probe pad 

set to one of the grounds on the other set. The probe grounds were therefore connected 

Figure 4.5.  Schematic of an elementary balun, made of two transformers.

Unbalanced 

Input

Balanced 

Output
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together by this wirebond. This arrangement is the cause of the ripples in the inverting mea-

surement. It also causes large inaccuracies in measurements of S11 and S22, as one of the 

probe grounds is left floating, and the probes are not used in the same configuration in 

which they are calibrated. The actual setup for the modified transformer measurement is 

shown in Figure 4.7.

Measurements and simulations of this and other transformers fabricated at BNR indicate a 

large difference in performance between configurations, aside from the expected 

180 degree phase difference. Figure 4.8 shows the simulated and measured magnitude and 

phase of  S11 and S21 of the transformer in both configurations. At low frequencies, the cou-

pling is low, but both configurations are similar. At higher frequencies, the coupling devi-

ates significantly. The reason for the difference lies in the interwinding capacitance.       

Intuitively, it would appear that a transformer with perfectly symmetrical windings should 

have equal performance in both configurations. If there was no interwinding capacitance, 

this would be true. In the non-inverting connection, the voltage gradient along the primary 

Figure 4.6.  Physical layout of the 2-turn transformer. The lines are 10 um wide, spaces are 
5 um wide, and the central hole is 150 um square.
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winding is the same as the gradient along the secondary, as seen in Figure 4.9a. The inter-

winding capacitance has no voltage across it. In fact, if poor coupling tends to reduce the 

output voltage, the interwinding capacitance would tend to increase the output swing. In the 

inverting connection, the voltage gradients are different, and there is voltage across the 
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Figure 4.7.  Modifications made to the transformer in Figure 4.6 so that it could be mea-
sured in the inverting configuration. The transformer in Figure 4.10, which is in the invert-
ing configuration in its unaltered state, is modified in a similar manner so that it can be 
measured in its non-inverting configuration.
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Figure 4.8a. Magnitude and phase of S21 of the two turn transformer (shown in Figure 4.6). 
The solid lines are simulated data, and the broken lines are measured data.
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Figure 4.8b. Measured (broken line) and simulated (solid line) S11 of the transformer shown 
in Figure 4.6 from 1 to 20 GHz. The upper trace is the non-inverting response, and the lower 
trace is the inverting response. The two measured traces are for ports 1 and 2, which ideally 
should be equal. Notice that the two measured responses in the lower graph are quite dif-
ferent at high frequency because of the awkward probe arrangement.
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interwinding capacitance as seen in Figure 4.9b. The capacitance tends to reduce the output 

swing. From this analysis, one would expect better performance from the non-inverting 

transformer, but a further complication arises. The low coupling factor and the physical 

length of the transformer introduce an additional phase shift in the voltage on the secondary 

winding. At the self resonant frequency, roughly a 180 degree phase shift in S21 (relative to 

the DC value) has occurred. This makes the voltage gradients along the two windings more 

similar on the inverting transformer configuration. In fact, measured transformers have 

wider band performance when operated in the inverting mode.  

Another way of considering the problem is by looking at the transformers as a coupled 

transmission line wound into a spiral. A pair of coupled lines driven as shown in Figure 4.9c 

Figure 4.9.  The effect of the interwinding capacitance in a transformer wired in various 
configurations. The drawings at the right are the coupled line equivalent circuits.

4.9a

4.9b

4.9c

4.9d
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has a dip in S21 at its quarter wavelength frequency. When driven as shown in Figure 4.9d, 

there is a peak in coupling when the lines are a quarter wavelength long. A winding of a 

transformer exhibits “parallel” resonance at the frequency at which it is a quarter wave-

length long. Even though this resonance occurred at 18 GHz in the 2 turn transformer, the 

imbalance is visible at frequencies as low as 4 GHz. The comparison between transformers 

and coupled lines is very appropriate, even at low frequencies. A 1:1 transformer (even an 

audio transformer) is a special case of the coupled line, where the line is much shorter than 

the wavelength. At high frequencies, coupled lines are accurate models of monolithic trans-

formers. The monolithic transformers studied in this chapter are capable of much tighter 

coupling than straight coupled lines of a similar geometry (the ratio of even to odd imped-

ance can be twice as high in a spiral design) and are therefore more useful in broadband 

circuits. 

The difference between the configurations can be avoided several ways. The ideal solution 

would minimize the interwinding capacitance. In monolithic designs, this can only be done 

at the cost of mutual inductance, for example by increasing the gap between the lines. The 

loss of mutual inductance usually offsets the gain in balance, as more tuning is required to 

achieve high S21. Another solution is to operate the transformer at a lower frequency where 

the reactance of the stray capacitance is higher. As the primary and secondary shunt induc-

tive reactances are so low at such frequencies, the primary and secondary windings are 

usually made parallel resonant. The result is a fairly narrow band transformer, but the 

amount of coupling is greatly increased. Another solution would be to add an extra capac-

itance to the non-inverting transformer to try to make it more similar to the inverting trans-

former. This will be explored in another section. Transmission line transformers can be 

made to use the interwinding capacitance to advantage, but such transformers can not be 

made on a monolithic circuit.
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4.4.  Symmetrical Monolithic Transformers

An attempt was made to fix the imbalance problem before the problem was properly under-

stood. The transformer in Figure 4.1c was designed to address the problem. The capaci-

tance between either terminal of the primary winding and either terminal of the secondary 

winding is the same. In conventional designs, such as the design in Figure 4.1b, most of the 

capacitance is between like terminals (i.e. between terminals connected to windings wound 

in the same direction) of the primary and secondary, because the parts of the windings con-

nected to the like terminals run side by side. 

Several transformers of both designs (similar to Figures 4.1b and 4.1c) have been fabricated 

and measured. The layouts of these transformers are shown in Figures 4.6 and 4.10. Notice 

that the transformer in Figure 4.10 can be measured in its inverting configuration without 

modifications. To measure it in the non-inverting mode, the air bridge in the ground ring 

must be removed, and a bond wire placed from one port’s former signal pad to the other 

port’s ground pad. Note that the transformer in Figure 4.6 was designed in the non-inverting 

Figure 4.10.  P
hysical layout of the 2-turn symmetrical transformer. The lines are 10 um wide, spaces are 
5 um wide, and the central hole is 150 um square.
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configuration (and must be modified to me measured in the inverting mode), and the trans-

former in Figure 4.10 was designed in the inverting mode (and must be modified to be 

tested in the non-inverting mode). Figure 4.7 illustrates the changes more clearly if the dif-

ference between the two designs is considered.  Figure 4.11 shows the S21 of 2-, and 3-turn 

transformers in both inverting and non-inverting configurations. Figures 4.11a and b apply 

to designs similar to Figure 4.1b with 10 um lines and 5 um spaces, central (“hole”) dimen-

sions of 150 um, fabricated on a 500 um GaAs substrate. The transformers in Figures 4.11c 

and d have similar dimensions, but are laid out as shown in Figure 4.1c. A phase shift of 

180 degrees has been added to the phase of the inverting response so that the two phase 

plots could be compared easily.                           

Notice that the response of the inverting and non-inverting configurations agree well at low 

frequencies, but degrades quickly at higher frequencies. The non-inverting response always 

shows a dip, where the inverting response is more benign. The phase difference also 

degrades suddenly at roughly the same frequency as the dip in magnitude. All of this occurs 

because capacitive coupling becomes dominant.

These measurements indicated that the imbalance problem in the new design was virtually 

the same as in conventional designs. This can be explained simply: when the transformer is 

used in the non-inverting mode, the voltage averaged over the primary is similar to the 

voltage averaged over the secondary (ignoring high frequency phase shift effects). The two 

averaged voltages will be different, and, in fact, of opposite polarity when the transformer 

is used in inverting mode. Notice that the difference in phase between the two configura-

tions above the first resonance is less for the symmetrical (Figure 4.10) design. This is likely 

a result of the redistribution of the capacitance. 

Although this form of transformer does not provide identical responses in both configura-

tions, it can be used to advantage as all four terminals are accessible from the outside of the 

transformer, and the centre tap can be located exactly. This transformer is ideal for use in 

balanced circuits. In section 4.7, a transformer similar to this forms the basis for a symmet-

rical balun that is a significant improvement over other designs.



94
Figure 4.11a. Measured response of a two turn transformer of the form shown in Figure 4.6. 
The transformer measures 290 um by 260 um, with lines and spaces of 10 um and 5 um 
respectively. 180 degrees has been added to the phase of the inverting response.
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Figure 4.11b. Measured response of a three turn transformer of the form shown in Figure 
4.6. The transformer measures 350 um by 320 um, with lines and spaces of 10 um and 5 
um respectively. 180 degrees has been added to the phase of the inverting response. 
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Figure 4.11c. Measured response of a two turn transformer of the form shown in Figure 
4.10. The transformer measures 260 um by 260 um, with lines and spaces of 10 um and 5 
um respectively. 180 degrees has been added to the phase of the inverting response. 
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Figure 4.11d. Measured response of a three turn transformer of the form shown in Figure 
4.10. The transformer measures 320 um by 320 um, with lines and spaces of 10 um and 5 
um respectively. 180 degrees has been added to the phase of the inverting response. 
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4.5.  Transformer Design

One of the goals of this study was to determine a monolithic transformer design technique. 

This section first discusses how to determine what electrical parameters a transformer 

should have, and then discusses approximate techniques for determining physical sizes.

4.5.1.  Selecting Transformer Parameters

Given a certain transformer structure, a designer needs to know how to arrive at an optimum 

transformer. In general, this involves attaining the widest bandwidth and lowest loss, in 

minimum space requirements. To achieve this optimum, it is usually necessary to maximize 

coupling factor and select an optimum resonant frequency.

The model in Figure 2.2 illustrates the effect of the coupling factor. The inductive reactance 

of the shunt inductor (representing the mutual inductance) must be greater than the system 

impedance, Z0 to avoid loading the generator excessively. The inductive reactance of the 

series inductors must be less than the load impedance to avoid excessive reflection. The ine-

qualities in  (4.1) and (4.2) describe this relation.

   therefore  (4.1)

 therefore  (4.2)

Fractional bandwidth =  =      (4.3)

Where F is the frequency of operation, M  is the mutual inductance, L is the self inductance, 

k is the coupling coefficient, and R0 is the characteristic impedance of the circuit. From 

(4.3), it can be seen that the minimum value of k  that allows any bandwidth at all (a frac-

tional bandwidth of greater than 1) is 0.67. When k=0.67, the minimum voltage loss 

through the transformer is roughly 0.5. This relationship places a well defined limit on the 

2πMF R0> 2πMFlower R0=

4πF L M–( ) R0< 4πFupper L M–( ) R0=

Fupper
Flower
---------------

k
2 1 k–( )
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broadband use of a monolithic transformer. Typical multi-turn monolithic transformers 

have coupling coefficients on the order of 0.8, which will result in a fractional bandwidth 

of 2 (octave bandwidth). Tuning can reduce the loss through the structure, but the funda-

mental limit on bandwidth remains.

The coupling factor of a monolithic transformer is highly dependent on the line width to 

gap ratio. In fact, if one ignores second order effects, (capacitance, short line effects and 

loss), the coupling factor of a complete transformer structure depends only on the line width 

and spacing, the substrate height, and the number of turns. Figure 4.12 is a plot of the cou-

pling factor versus number of turns for a rectangular transformer designed as shown in 

Figure 4.1b. This graph was derived by fitting a simple mutual inductance model to the 

GEMCAP model (with capacitive and resistive elements removed from the model). From 
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this graph, it can be seen that little improvement in coupling factor is made by increasing 

the transformer size beyond 3 turns. It is also apparent that the gap between conductors 

should be made as small as practically possible. The graph also suggests that for a given 

pitch, wide lines yield the largest coupling factor. If the lines in a transformer are widened, 

while the gap dimension is maintained, both the self and the mutual inductance decrease 

(although the self inductance decreases slightly faster). The resulting transformer will have 

less self inductance and therefore higher (poorer) low frequency cutoff frequency. Wide 

lines may be necessary to reduce resistive losses, or provide sufficient DC current capacity. 

Although a narrow gap increases the mutual coupling, it also increases the interwinding 

capacitance. As the transformers are usually operated below their self resonant frequency, 

the extra capacitance associated with the tight coupling is less important. In fact, capaci-

tance is sometimes intentionally added to resonate out the self inductance. As will be seen 

from (4.4), the added capacitance will tend to reduce bandwidth.

Low impedance transformers can be made by adding windings in parallel, such as in the 

example shown in Figure 4.2a. The mutual coupling versus winding spacing and number 

of windings is exactly the same as the series connected case, and the same graph can be 

used.

A simple model can be useful in suggesting how to optimise a transformer design for wide 

bandwidth. The model of a simple 1 to 1 transformer with unity coupling coefficient is 

shown in Figure 4.13. This model is derived from the model in Figure 2.2 by adding stray 

capacitance, and assuming k=1. The inductance is simply the self inductance of either 

winding, and the capacitance represents the stray winding capacitance. The low frequency 

limit is determined by the frequency where the inductive reactance of the mutual inductance 

equals the system impedance. The high frequency operational limit (if k=1) is determined 

by the frequency where the capacitive reactance of the stray capacitance equals the system 

impedance. The fractional bandwidth is the upper frequency divided by the lower fre-

quency. Equation (4.4) shows approximately the expected bandwidth.

     (4.4)Bandwidth
1

R0
2

------
L
C
----∝
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where R0=Rin=Rout is the characteristic impedance of the system (assumed to be real), L is 

the self inductance, and C is the stray capacitance. As might be expected, the impedance of 

the system can be lowered to decrease the loaded Q, and increase bandwidth. The main cost 

associated with driving a lower impedance load is increased loss, as conductor loss is 

always dominant in monolithic transformers.

The stray capacitance of a transformer is difficult to calculate from the transformer's dimen-

sions. Tables of inductor models supplied by GaAs foundries give the parallel parasitic 

capacitance and inductance of inductors with a fixed line width to gap ratio [31]. These 

tables indicate that the stray capacitance of inductors in the form of Figure 4.1b increases 

(with the number of turns of the inductor) more slowly than the inductance. This would 

suggest that, ignoring distributed effects, a larger transformer (i.e. an inductor with more 

turns) would have a wider bandwidth. The reason that capacitive effects increase relatively 

slowly is because most capacitance is between adjacent turns; end to end capacitance will 

actually decrease as the ends become farther apart.

Transformers with parallel windings, such as in Figure 4.2b will tend to have less band-

width than the series wound transformers because inductance decreases as the number of 

parallel turns is increased, but capacitance increases. Hence, the L/C ratio, and therefore the 

bandwidth will decrease as the number of turns increases.

Figure 4.13.  Elementary transformer model for bandwidth calculation.
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The other factor that will tend to limit upper frequency response is the length of either wind-

ing. If either winding approaches a quarter wavelength in length, the simple rules of thumb 

described above can not be employed. Although GEMCAP can still be used if a sufficient 

number of elements are included in the model, more traditional transmission line analysis 

tends to be more convenient.

4.5.2.  Transformer Design

The complexity of the model of a transformer makes the use of look-up tables or nomo-

grams for an exact design unwieldy. Instead, this section outlines a procedure that can be 

used to determine the approximate size and configuration of a transformer for a given appli-

cation. The dimensions of the transformer can be entered into the GEMCAP program so 

that a circuit model can be generated. The physical dimensions in the GEMCAP model can 

be altered if the electrical characteristics of the first guess are not appropriate.

There are several guidelines that should be kept in mind when laying out monolithic trans-

formers. Adjacent conductors should belong to different windings. If adjacent conductors 

belong to the same winding, then the mutual inductance between these adjacent conductors 

is being converted into the self inductance of that winding, lowering the coupling coeffi-

cient of the transformer. If step-up or step-down transformers are to be made, it may be ben-

eficial to employ parallel turns on low impedance winding to lower loss and increase 

coupling. A more balanced transformer design results when the capacitance between either 

end of the primary winding is split evenly between the two ends of the secondary winding.

Steps that can be employed to design a monolithic transformer are outlined below.

1) The inductance of each winding must be determined. The inductance is determined 

largely by the circuit configuration. If the transformer is itself matching a capacitive source 

or load, as is the case in FET amplifier designs, the inductance will be determined by the 

impedance of the device connecting to it. Usually, the inductance tunes out the capacitance 

exactly, making the combination parallel resonant at centre frequency. If the transformer is 

to have a non-unity turns ratio, the inductance ratio must equal the impedance ratio.
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If the transformer is operating into real impedances, then the designer must consider tuning 

in order to reduce reflections and improve coupling. In examples given here, over a 3 dB 

improvement in S21 (in a 50 ohm system) can be achieved through tuning. Tuning improves 

insertion loss for any transformer that does not have perfect coupling and has resistive 

losses. The amount of tuning that yields a transformer with minimum loss at a given fre-

quency, or the transformer size that yields optimum insertion loss when tuned is not easy to 

calculate. In fact, even if it could be calculated for an ideal system, the capacitive parasitics 

would perturb the calculation sufficiently such that re-tuning would be required. For the 

losses usually encountered in monolithic transformers, selecting a winding self inductance 

with an inductive reactance roughly equal to the system impedance yields good results. The 

capacitor required to tune this circuit will also have a reactance of roughly the system 

impedance. The effect of tuning the two turn BNR transformer discussed in section 4.3 is 

illustrated in Figure 4.14. Identical capacitors were placed in parallel with the primary and 

secondary of the transformer, and its frequency response in a 50 ohm system was simulated. 

Both inverting and non-inverting transformers are shown. The plots, from right to left are 

for transformers tuned with 0 pf, .5 pF, 1 pF, 1.5 pF, and 2 pF capacitors. Notice that there 

is a frequency at which the S21 is optimum. Also notice that higher values of capacitance 

make the two configurations look more similar. At higher frequencies, series tuning capac-

itors are more effective.

Using the transformer without any tuning capacitors will yield the broadest design, but very 

high mismatch losses are seen. The cause of this is the low self inductance of the windings. 

This is the principal dilemma in monolithic transformer design. Self inductance must be 

kept low to reduce losses, save space, and to avoid distributed effects. In designs such as 

this, the self inductance of each winding of a transformer to be used untuned should be 

greater than the characteristic impedance of the system at the lowest frequency of opera-

tion.

2) Determine the maximum DC and AC current that will flow the windings. Using infor-

mation about the characteristics of the metallisation used, determine the minimum permis-

sible transformer winding width.
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Figure 4.14.  Magnitude of S21 of a tuned two turn transformer tuned with 0, .5 pF, 1 pF, 
1.5 pF, and 2 pF parallel capacitors, right to left. The upper transformer is operating in the 
non-inverting mode, and the lower transformer is operating in the inverting mode.
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3) The physical dimensions of a transformer to achieve the desired inductance can be esti-

mated with the graph in Figure 4.15. This graph gives the self inductance per unit length (at 

low frequencies) for linear transformers consisting of 2, 3 and 4 conductors, with various 

line pitches (centre to centre distance of lines). An illustration of the linear transformer used 

in these calculations (with 3 conductors) is shown in Figure 4.16.  Note that this transformer 

can not be physically laid out in the form shown. Instead, it is assumed that the character-

istics of the transformer will not change significantly when bent around to form a spiral 

transformer of the form shown in Figure 4.1. These graphs are approximate as the induc-

tance will also depend on line width and length. In particular, transformers in which the 

length of each side is less than the substrate height will have less inductance than predicted 

from Figure 4.15. The short line effect can be accounted for by using Figure 4.17. This 

graph gives the reduction in inductance given the ratio of the substrate height to line length. 
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Figure 4.15.  Inductance per mm for the elementary transformer shown in Figure 4.16 for 
various substrate heights.
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Figure 4.16.  Elementary linear transformer used as a basis for Figure 4.15 and Figure 4.17. 
Note that this transformer is not physically realizable, as the right to left return paths are 
assumed not to couple to the rest of the transformer.
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Figure 4.17.  Inductance reduction factor for inductors and transformers made with short 
lines.
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To use this graph, one first calculates the pitch required. Generally, the minimum spacing 

between lines, as specified by the process design rules, is suggested, and the line width cal-

culated in step 2 is used. Next, the number of turns and substrate height are determined. 

Generally, a 3 or 4 turn transformer is preferred over a 2 turn transformer, as the former has 

better coupling coefficient. Using the above information, one can determine the overall 

transformer length required by referring to Figures 4.15 and 4.17. The actual rectangular 

layout should be sketched out, to insure that it is physically realizable. The hole in the 

middle of the transformer should be at least 5 line widths wide. If it is not, then there will 

be significant negative mutual inductance between opposite sides of the transformer.

Transformers with non-unity turns ratios can also be designed with this graph. First, the 

designer must determine a basic layout that will give the required ratio. Suggested layouts 

are shown in Figure 4.2. If a winding is made of a single conductor, (normally of several 

turns), then Figure 4.15 can be used directly. To calculate the inductance of a winding made 

of parallel conductors, such as shown in Figure 4.1c, then the inductance of a single path is 

calculated. The added parallel windings will reduce the inductance slightly (roughly 20%).

The use of this graph is best illustrated with an example. Assume that a transformer with 

self inductance of 6 nH is required, and that a minimum line width of 10 um is required to 

carry DC current. If a 5 um gap is employed, the pitch of the windings is 15 um. From the 

graph, a 3 turn transformer made with such a pitch, on a 500 um substrate, has an induc-

tance of 6.5 nH per mm. Therefore, a transformer length of 920 um is required. The length 

of each side will be roughly 250 um, which is less than the substrate height, so a correction 

factor from Figure 4.17 must be applied. Dividing 920 um by 70% yields a length of 

approximately 1300 um, or 325 um per side. Figure 4.18 illustrates one possible implemen-

tation such a transformer. Note that the length calculated by Figure 4.15 represents the 

length of the centre conductor in the 6 conductor bundle. Although the outer and inner con-

ductors are larger and smaller, respectively, the average length is correct. This transformer 

was entered into GEMCAP and modelled. The self inductance was 6.2 nH, which is very 

close to the desired value of 6 nH.
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4) The resistance of the windings can be used to determine approximately the dissipative 

loss of the transformer. The approximate portion of the power that enters a winding that is 

not dissipated by that winding's series resistance is given by (4.5).

                     (4.5)

Rs is the series resistance of the winding and R0 is the characteristic impedance of the circuit 

driving the transformer and the load. This equation assumes a good match and assumes that 

Rs<<R0. Note that this must be applied to both the primary and the secondary windings of 

the transformer. By applying (4.5), one can determine the maximum winding resistances 

that will yield a given loss. One can determine the DC resistance of the windings by multi-

Figure 4.18.  A 3 turn transformer designed with the transformer design technique. 
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plying the sheet resistivity of the metal by the number of squares that make up the winding. 

If the resistance exceeds the number calculated with (4.5), then a wider metal width should 

be selected, and the inductance re-calculated in step 3. In the example cited above, the DC 

resistance (for 1 um thick gold conductors) was 8.4 ohms, which causes a loss of 0.8 dB in 

the primary winding and 0.8 dB in the secondary winding, for a total of 1.6 dB total. The 

simulated tuned loss (with lossless series inductor and shunt capacitor tuning) was 1.59 dB.

5) The transformer length should be less than .25 wavelengths long at the maximum oper-

ating frequency.
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4.6.  Transmission Line Transformers

Transformers in use at frequencies above 1 MHz typically fall into one of two categories: 

conventional transformers that rely strictly on the flux linkage between windings for power 

transfer, and transmission line transformers that transfer energy through a transmission line 

mechanism. In designing the former transformer, one minimizes parasitic capacitance 

between the primary and secondary. Transformers of the later design use “parasitic” capac-

itances to form transmission lines. This form of transformer could be further classified into 

devices with a length of less than a quarter wavelength, and those with a length roughly 

equal to, or greater than a quarter wavelength. The latter are usually referred to as couplers 

rather than transformers, and will not be discussed. Electrically short transmission line 

transformers, when formed on a low-loss ferrite core, can have losses as low as .02 dB in 

the 3-30 MHz frequency range [34]. Transmission line transformers can only be fabricated 

in certain discrete ratios, but clever design can yield many useful configurations. In order 

to illustrate the difference between the transformers, the operation of an isolation trans-

former will be described.

The purpose of an isolation transformer is to allow the transfer of energy between two cir-

cuits that may be at different potentials. A conventional transformer can accomplish this 

(with isolation down to DC) because the primary and secondary circuits are not electrically 

connected; the magnetic flux linkages provide the energy transfer. A transmission line of 

sufficient length can provide isolation between its ends because of the self inductance of 

the line, although this isolation does not extend down to DC. Transmission lines of quarter 

wavelength length (the wavelength of the transmission line in its surrounding medium must 

be considered) are frequently used in baluns as they behave like a quarter wavelength 

shorted stub, which has a high impedance. The impedance between the ends of a transmis-

sion line can also be increased by wrapping it around a magnetic material, as shown in 

Figure 4.19. The characteristics of the transmission line, as far as the “differential” signals 

travelling on it are concerned, do not change, as the currents on each conductor of the line 

are equal, and the magnetic fields produced exactly cancel outside the line. “Common 

mode” signals imposed from the output of the circuit to a common ground will be blocked 
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from the input of the circuit because of the extra inductance. A transmission line trans-

former can not usually provide DC isolation between circuits but can provide RF isolation. 

The most common type of transmission line transformer uses a twisted pair transmission 

line wrapped on a toroidal ferrite or powdered iron core. For broadband operation, the trans-

mission line length is less than a quarter wavelength. The loss of such a transformer is deter-

mined by the loss of the transmission line, and this can be made extremely low if the correct 

characteristic impedance is maintained. In Figure 4.20 this isolation transformer is illus-

trated in both a conventional and a transmission line form. Although these two transform-

ers, in the inverting configuration, yield the same schematic, this is true only in the simplest 

cases. The transformer shown in Figure 4.20 forms the basis for transmission line trans-

formers, including the Ruthroff designs [6].

This transmission line transformer can easily be converted into a balun by adding a third 

(often smaller) winding. This winding induces half of the output voltage into the transmis-

sion line to make an exact balance. The current in this winding is determined by the induc-

tance of the transmission line, and can be made small. This balun is illustrated in schematic 

form in Figure 4.21.

Toroidal Core Transmision Line 

(Coax, or Twisted Pair)

Port 1

Port 2

Figure 4.19.  Pictorial view of basic transmission line transformer made by wrapping a 
twisted pair or coaxial cable around a ferrite toroid.
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At this point, it is interesting to compare monolithic transformers with toroidal transformers 

wound on a ferrite core, and explain the differences. The magnetic core is the key to the 

toroidal transformer performance. If the two (or more) windings are isolated from each 

other on the core, then a conventional transformer results. The core increases the coupling 

Ri
Rl

Ri
Rl

Figure 4.20.  Comparison between “Conventional” transformer (top) and transmission line 
transformer (bottom).

Balanced  

Output

Unbalanced 

Input

Figure 4.21.  Trifilar transmission line balun. Note that the upper winding can be smaller 
than the other two windings.
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factor by confining the magnetic fields, and also increases the self inductance of the wind-

ings. All of this is done without adding any capacitance. If twisted pair is used for the two 

windings, coupling between windings is increased, and interwinding capacitance is added. 

The result is a transmission line transformer. Since the required self inductance can be 

achieved with less wire, losses can also be kept very low.

Transmission line transformers are possible only because the end to end inductance of the 

transmission line can be increased (by using a ferrite core, for example) without modifying 

the properties of the transmission line. Transmission line transformers can not be made con-

ventional monolithic circuits because it is difficult to make a shielded transmission line. 

Since magnetic material for the confinement of the magnetic field is not available, the trans-

mission line must be wound very tightly to achieve sufficient longitudinal inductance. This 

tightness increases the undesired capacitive and inductive coupling between windings, and 

between the opposite ends of windings.
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4.7.  Baluns

A balun is a device that splits a single signal into two signals of equal amplitude and oppo-

site phase. Since a balun is a reciprocal device, it can also combine two out-of-phase signals 

into one signal, with equal weighting on both input signals. At low frequencies, this func-

tion is commonly performed with great precision by a transformer. Transmission line trans-

formers make especially good baluns at RF frequencies up to 1 GHz.

There are no standard techniques for fabricating a balun on a monolithic circuit at micro-

wave frequencies. Circuits that split a signal into two, and route one signal through a high 

pass network and the other signal through a low pass network have been used [35]. These 

“High-pass low-pass” structures offer two signals, lagging and leading the input by 90 

degrees. They suffer from an inherently low bandwidth, and fairly high loss. Baluns that use 

sections of slot line and coplanar waveguide in conjunction with microstrip have been pro-

posed [36]. They look promising at frequencies above 20 GHz, but their use below this fre-

quency is precluded by their size. Active baluns using GaAs FETs may be the most compact 

solution at low microwave frequencies. They can be configured to have gain, and their 

bandwidth can extend down to DC [37]. The principal disadvantage of the active balun is 

that they consume DC power, and they may add unwanted distortion to the incoming signal. 

Baluns that employ tuned coupled line sections work on the same principals as the mono-

lithic baluns described here, but take more space. “Rat-Race” and hybrid ring structures can 

also be used over fairly narrow frequencies, but they are distributed, and take an enormous 

amount of area.

Monolithic transformers such as the ones discussed in Chapter 4.3 are not exceptionally 

well suited for use as baluns unless a great deal of care is exercised. This section deals with 

the requirements for a good balun.

4.7.1.  Balun Models

Baluns are often made with transformers that have three windings, and are known as trifilar 

transformers. They can be represented by either of the equivalent circuits shown in 
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Figure 4.22. These schematics are based on the models in Chapter 2.2. The model shown 

in Figure 4.22b affords extra simplicity as a model of a balun. If one assumes that the char-

acteristics of the two balanced windings are identical, (which is true for an ideal balun), 

then transformers T1 and T2 have identical characteristics, and the mutual coupling of 

transformer T3 is zero, and can be eliminated from the circuit. Thus, a perfectly balanced 

balun transformer can be represented by the equivalent circuit shown in Figure 4.5. This 

model is useful for circuit design, because it implies that two halves of a push-pull circuit 

can be analysed singly, and then placed in parallel. When a similar analysis is done to the 

model shown in Figure 4.22a, it becomes apparent that similar simplifications can not be 

made to it. Therefore, a transformer balun can not be modelled as two transformers with 

their primary windings in series.

T1

T2

T3

T1

T2

T3

a b

Figure 4.22.  Two possible models for a balun. The model on the right can be simplified if 
the balun is indeed balanced because the mutual inductance of T3 becomes zero, and the 
self inductance can be incorporated into T1 and T2.
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4.7.2.  Baluns Fabricated from Transformer Pairs

The model in the previous paragraph suggests a possible implementation of a balun. Two 

separate but identical transformers connected as shown in Figure 4.5 should yield a perfect 

balun. Intuitively, it would appear that a transformer with perfectly symmetrical windings 

should have equal performance in both configurations. If there was no interwinding capac-

itance, this would be true. Unfortunately, the transformer's interwinding capacitance causes 

an unbalanced output signal as described in Chapter 4.3.

A two transformer balun using the two turn transformers described in section 4.3 has been 

modelled. Since the transformers are in parallel, the optimum impedance of each of the bal-

anced output arms is twice the impedance of the input circuit. The frequency response of 

this balun in a system with 50 ohms on the input, and 100 ohms on both outputs is shown 

in Figure 4.23a. The broken line represents the inverting output, and the solid line represent 

the non-inverting output. If the transformer is tuned with a shunt capacitor on each of the 

three terminals, to give the lowest loss at 5 GHz, the frequency response shown in Figure 

4.23b is found.  From these graphs, it is obvious that the outputs are balanced at low fre-

quencies, but become progressively less balanced at high frequencies. Adding capacitive 

tuning improves the balance and insertion loss at low frequencies, at the expense of making 

the bandwidth narrower.

4.7.3.  Centre Tapped Baluns

The more conventional way of making a balun at lower frequencies is to use a centre-tapped 

transformer. Monolithic transformers can be centre-tapped at any position along any wind-

ing, but the transformer in Figure 4.1c can be used to position the tap exactly in the centre. 

Transformers of this nature have been simulated, and measured, and their characteristics are 

very similar to two discrete transformers. A 1:1 (overall turns ratio) centre tapped trans-

former with layout shown in Figure 4.24 was simulated with GEMCAP. Figure 4.25a shows 

the frequency response of both outputs of the transformer. Each of the two outputs was 

loaded with a 50 ohm impedance, and the input was driven with a 100 ohm source. The per-

formance of the transformer with tuning capacitors on all 3 ports is shown on Figure 4.25b. 
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Figure 4.23a. Magnitude and phase of S21 of a basic balun made from two transformers. 
The solid line is the non-inverting port response, and the broken line is the inverting port 
response. 180 degrees has been added to the phase of the inverting configuration. 
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Figure 4.23b. Magnitude and phase of S21 of a basic balun made from two transformers 
with parallel tuning applied to both ports. The solid line is the non-inverting port response, 
and the broken line is the inverting port response.180 degrees has been added to the phase 
of the inverting configuration. 
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The frequency response of this balun is quite flat but its loss (over 5 dB tuned) is larger than 

other baluns. The large loss is not intrinsic to this type of transformer; it comes about 

because each secondary winding has only 1 turn. The next design to be discussed is very 

similar to this design, but it has 1.5 turns on each half of the secondary winding.        

4.7.4.  Trifilar Baluns

The first implementation of a trifilar monolithic spiral balun was published by Boulouard 

and Le Rouzic [38]. The transformer consists basically of three parallel microstrip lines 

wrapped into a spiral, forming 1 or 1.5 turns. The middle line is excited, and the outer two 

lines are connected to yield two out of phase signals. Although they refer to their design as 

a “Ruthroff” design, the fact that there is little increase in inductance along the length of the 

windings would suggest that it is simply a trifilar transformer. In fact, this design is simply 

a centre tapped transformer with an overall 1:2 turns ratio. The measured (from [38]) and 

GEMCAP modelled s-parameters of one half of the 1 turn “Triformer” (with the remaining 

port open-circuited) is shown in Figure 4.26. Notice that the loss is on the order of 5 dB. 

Figure 4.24.  Layout of a centre tapped balun. The black bars are air-bridges.
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Figure 4.25a. Magnitude and phase of S21 of a centre tapped transformer with an overall 
turns ratio of 1:1. The solid line is the non-inverting port response, and the broken line is 
the inverting port response. 180 degrees has been added to the phase of the inverting con-
figuration.
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Figure 4.25b. Magnitude and phase of S21 of a centre tapped transformer with an overall 
turns ratio of 1:1, tuned for peak response at 5 GHz. The solid line is the non-inverting port 
response, and the broken line is the inverting port response. 180 degrees has been added to 
the phase of the inverting configuration. 
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This loss does not include the power transmitted to the other output, since the other output 

is open-circuited. The phase difference between the two outputs is within 3 degrees 

between 1 GHz and 9 GHz, but the amplitude imbalance between the two outputs reaches 

2 dB at 9 GHz.

In order to compare the performance of the trifilar balun with the other baluns in this sec-

tion, a trifilar balun of dimensions similar to the other devices was simulated. The layout of 

this balun is shown in Figure 4.27. To achieve good coupling, a 2:3 turns ratio was 

employed. (A 2 turn primary was used to make the comparison with the other transformers 

fair. If a standard trifilar spiral was used, secondary lines would lie next to each other, 

“wasting” mutual inductance. This design ensures that all mutual coupling from adjacent 

lines contributes to S21 or S31.) The overall impedance ratio for this transformer is 1:2.25, 

so ideally it should be tested an a system with 50 ohms on the primary, and 56.25 ohms on 

Figure 4.26.  Measured (broken line, from [38]) and computed (solid line) S21 of a trifilar 
transformer. Note that the measured response of only the non-inverting port is available.
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each secondary. The transformer was simulated in a system with 50 ohms on all ports as the 

extra loss is small. The frequency response is shown in Figure 4.28a. The frequency 

response of the transformer with shunt tuning capacitors on all 3 ports (adjusted for peak 

coupling at 5 GHz) is shown in Figure 4.28b. This response is similar to the other centre 

tapped transformer but the loss was slightly lower.      

4.7.5.  The Symmetrical Balun

As was discussed in section 4.3, the main reason that an otherwise perfectly symmetrical 

balun behaves asymmetrically is because it is driven from an asymmetric source so that the 

interwinding capacitances are excited differently. If the source could be made to look sym-

metrical, then there would be no imbalance. If a transformer is made with both primary and 

Figure 4.27.  Layout of the trifilar transformer. Dimensions are in microns.
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Figure 4.28a. Magnitude and phase of S21 of a trifilar transformer with an overall turns ratio 
of 1:2.25. The solid line is the non-inverting port response, and the broken line is the invert-
ing port response. 180 degrees has been added to the phase of the inverting configuration. 
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Figure 4.28b. Magnitude and phase of S21 of a trifilar transformer with an overall turns ratio 
of 1:2.25 when tuned for peak response at 5 GHz. The solid line is the non-inverting port 
response, and the broken line is the inverting port response. 180 degrees has been added to 
the phase of the inverting configuration. 
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secondary centre-tapped, then one half of the primary could be driven, while the other half 

is left to float, as shown in Figure 4.29.  The floating terminal of this transformer will have 

a signal induced on it 180 degrees out of phase from the incoming signal. The voltage 

between the two outer primary terminals is balanced with respect to ground. As long as the 

transformer is symmetrical, the interwinding capacitances will be driven symmetrically, 

and the two outputs will be balanced. The circuit is still not perfectly balanced, as the cur-

rents flowing in each half of the primary are not the same. As long as each half of the 

primary inductively couples equally to both halves of the secondary, the effect is small.

Such a transformer has been laid out, simulated and tested [39]. The layout of the trans-

former is shown in Figure 4.30. The transformer was tested with coplanar waveguide 

probes. Due to space limitations, the unused port was left unterminated. Although the cou-

pling was quite low, the balance was better than other monolithic baluns. Since only half of 

the primary winding is used, the overall turns ratio of the transformer is 1:2. The simulated 

frequency response of the transformer when the primary is driven with a 50 ohm source, 

and each secondary is loaded with 100 ohms is shown in Figure 4.31a. Figure 4.31b shows 

the frequency response of the transformer when it has been tuned for maximum coupling 

at 5 GHz with shunt capacitors on all three ports. The bandwidth of this transformer is 

NC

Input

Balanced Outputs

Figure 4.29.  Schematic of the symmetrical transformer balun. The unconnected primary 
“Dummy” winding improves balance.
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slightly larger than the other designs. The insertion loss is comparable to other designs. The 

ultimate balance of this transformer is not quite as good as the other transformers. A short 

length of transmission line on one of the ports improves the phase response. If this line was 

coupled to the rest of the transformer, improved amplitude response might result. Beyond 

10 GHz, all of the transformers exhibit drastic degradation in balance, as seen in Figure 4.8.            

Note that all simulations were performed under the same processing and electrical con-

straints. The lines were 10 um wide, and the spaces were 5um wide. The metal was assumed 

to be 1 um thick with a sheet resistivity of .02 ohms per square (gold). The substrate mate-

rial was GaAs, 500 um thick. The input ports were terminated with 50 ohms, and the output 

ports were terminated according to the turns ratio. By comparing the frequency response of 

the different configurations, one can see a slight advantage to using the balanced design. 

The main disadvantage of using the balanced design is that the range of turns ratio is lim-

ited. The requirement for an extra, unused winding also makes the transformer larger than 

more conventional designs.

Figure 4.30.  Layout of the symmetrical balun.



128
Figure 4.31a. Magnitude and phase of S21 of a symmetrical balun. The solid line is the non-
inverting port response, and the broken line is the inverting port response. 180 degrees has 
been added to the phase of the inverting configuration. 
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Figure 4.31b.Magnitude and phase of S21 of a symmetrical balun tuned for 5 GHz. The 
solid line is the non-inverting port response, and the broken line is the inverting port 
response. 180 degrees has been added to the phase of the inverting configuration.
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4.8.  Conclusions

From examination of the different transformers, one can conclude that there is little funda-

mental difference between the various designs. All designs are capable of operating over a 

narrow band of frequencies. Wider band performance can be achieved with the symmetrical 

design, but only at the expense of balance. The loss can be reduced by employing thicker 

metal or wider lines, and through improved matching techniques.

Higher frequencies will necessitate smaller transformers. Ideally, one could simply scale 

down the size of the transformer to allow operation at arbitrarily high frequencies, subject 

only to lithographic constraints. Unfortunately, the skin effect causes losses to increase as 

well. The ultimate useful frequency of operation of these baluns with gold metallisation in 

a 50 ohm environment is on the order of 20 GHz. Beyond that frequency, conventional dis-

tributed structures will be more useful.
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS

The major goal in performing this research was to gain an understanding of monolithic 

transformers, and to determine their suitability for use in MMICs. To achieve this goal, a 

technique for analysing monolithic coupled structures was developed, and tested with mea-

surements from various devices. The technique was then used for evaluating various hypo-

thetical structures. As a by-product of this exercise, a number of microstrip structures could 

be analysed.

5.1. CAD Program Design

The analysis technique used two different techniques for the calculation of the inductance 

matrix; closed form equations, and the inversion of a unity ε capacitance matrix (the ICM 

technique). The two techniques gave different results, especially when short conductors 

were considered. The closed form equations, which, in their simplest form can be derived 

without approximation from the Biot-Savart law, predict that shorter lines have less induc-

tance per unit length than long lines. The ICM technique predicts constant per unit length 

inductance, and agrees with the closed form equations for long lines. Although experiments 

to verify these equations directly on simple structures gave mixed results, the closed form 

equations were consistently more accurate for inductors and transformers whose dimen-

sions were on the order of the substrate thickness. 

The resulting program (GEMCAP) was verified with measured and published results. Even 

though the devices examined were modelled strictly with simple lumped elements, excel-

lent agreement was seen into the microwave region. An important conclusion of this work 

is that compact MMIC designs do not need especially elaborate distributed models, but all 

forms of stray coupling must be accounted for.

GEMCAP was optimized to analyse spiral transformer and inductor structures, and can 

analyze some devices more efficiently than any other program. The mutual coupling 

between two adjacent inductors can be analysed at 200 frequency points in less than 3 min-
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utes. The only other programs capable of performing such operations are full wave electro-

magnetic simulators that require orders of magnitude more time to perform a similar task. 

GEMCAP has been used to design transformers consisting of up to 9 turns for use at UHF 

frequencies. A useful s-parameter model of such a transformer can be determined in the 

space of 10 to 15 minutes. GEMCAP’s flexibility allows it to analyze other structures com-

monly found on MMIC devices. It has been very useful for analysing stray coupling 

between coupled line structures and surrounding ground planes. 
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5.2. GEMCAP Accuracy

An important criterion for the selection of a modelling technique is its accuracy. Unfortu-

nately, the accuracy that can be obtained depends on what structures are being analysed. 

The source of inaccuracies can be broken down into three categories: inaccuracy due to 

inherent limitations of the computer algorithms, inaccuracy because of second order effects 

not taken into account in the model (the models ability to deal with the real world), and 

inaccuracy because of conscious simplifications made by the user of the program. These 

categories are elaborated on below.

The actual capacitance and inductance calculations are fundamentally very accurate. For 

filamentary conductors, the closed form equation is exact. The accuracy of the method of 

moments technique is better than 1% [19]. The calculation of the loss is empirically based, 

and has a theoretical accuracy of 10%, although actual loss has been as much as 50% higher 

than this theory.

The application of these techniques leads to larger errors, however. For example, the anal-

ysis of inductance of conductors with finite cross-sectional area has more error associated 

with it. How much more depends on the aspect ratio of the conductors. The capacitance 

algorithm assumes infinitely thin conductors, and metal with finite thickness will have 

more capacitance associated with it. The loss of real metal with grain bounders and surface 

roughness is higher than that of pure metal. 

Finally, the application of any algorithm is subject to the intelligence of the designer using 

it. The effect of coupling between adjacent components, ground inductance, and end effects 

will add inaccuracy to any simulation.

These variables would make the exact specification of any accuracy subject to so many con-

ditions that the user would find the specification useless. From the analysis and measure-

ment of several components, one can estimate the accuracy of the program for certain 

common applications. The program has been able to calculate the inductance of monolithic 

inductors reliably to within 10%. The loss of these inductors increases with frequency more 
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rapidly than the program predicts, and actual loss at the inductor’s resonant frequency can 

be a factor of 2 higher than predictions. The resonant frequency can be predicted with less 

than 10% error. The coupling between inductors depends on the setup of the test, and little 

measured data is available, but accuracy to within 3 dB should be possible. 

Many of the same estimates apply to transformers. A transformer’s coupling can be pre-

dicted to within ± .5 dB up to the frequency of the first resonance. Beyond that frequency, 

poorer agreement is seen, although much of the error may be due to measurement inaccu-

racies.

The program has no lower frequency limit of operation. The upper frequency limit will be 

determined primarily by the frequency at which the loss calculations become inaccurate. 

For typical monolithic integrated circuits, an upper limit of 20 GHz is recommended. 

Beyond this frequency, surface roughness, radiation, and other non-idealities need to be 

taken into account. (Even below 20 GHz, loss predictions are usually optimistic.) After 

losses, the next most significant source of error is the discontinuity. At 6 GHz, the discon-

tinuities on typical MMIC inductors and transformers are insignificant, especially if corners 

are bevelled, but their effect becomes important at higher frequencies. Depending on the 

structure, discontinuities will start to become significant between 15 GHz and 20 GHz. If 

SuperCompact or Touchstone is used with GEMCAP, then the simulator’s discontinuity 

models can be used to improve accuracy. At frequencies above 20 GHz, spiral components 

are usually rejected in favour of traditional transmission lines. For typical MMIC devices,  

dispersive effects can be ignored. For .5 mm thick substrates, dispersion will become sig-

nificant only  above 30 GHz. 

More measurements need to be done to quantify the program’s accuracy. Several devices 

have already been fabricated with aid from this program, and the results have been satisfac-

tory.
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5.3. Monolithic Transformers and Baluns

Many sizes and topologies of monolithic transformers were analysed. All transformers had 

surprisingly similar characteristics. All limitations of monolithic transformers stem from 

the low inductance and low coupling factor attainable on a monolithic device. This low 

inductance makes the trade-off between the length of the windings and loss severe. Induc-

tance (and therefore coupling coefficient and bandwidth) can only be increased by increas-

ing the length of the windings, and this increases loss. Transformers typically had a loss of 

1 dB or more in a 50 ohm system when tuned, and bandwidths of less than one octave. The 

loss problem can be overcome with thicker metal, but ultimately the skin effect will limit 

the gains that can be made.

Despite their shortcomings, monolithic transformers can be useful in narrow band (less 

than an octave) circuits. Monolithic transformers can be used as a compact, high coupling 

alternative to the coupled line. As a coupling device, a transformer can take the place of two 

tuning inductors and a coupling capacitor. The loss through the transformer would be com-

parable to conventional circuitry, but the transformer will have a space advantage. 

A design procedure that allows the designer to accurately synthesize a transformer with 

certain self inductances has been demonstrated. It can be used to provide a “first cut” trans-

former design accurate to within 20%. GEMCAP can then be used refine the transformer 

and to develop an exact model.

Transformers can be connected as baluns, or special centre tapped transformers can be 

designed. In either case, the baluns have similar characteristics to the transformers that they 

are made from. Baluns with a output balance of better than .5 dB and 5 degrees have been 

demonstrated. As there are presently no satisfactory compact passive balun designs avail-

able, the spiral transformer balun could become a commonly used circuit element. The 

techniques presented in this thesis are ideal for exploiting these new elements. 
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APPENDIX A

DERIVATION OF GROVER’S FORMULA

Grover’s formula [23] gives the mutual inductance of two equal length, parallel, filamentary 

conductors. It forms the basis for most of the inductance calculations in the GEMCAP pro-

gram, and most other monolithic inductor calculations. The formula can be derived by 

determining the magnetic field around a length of conductor carrying a DC current, and 

then integrating the field to find the flux linking a second conductor.

The Biot-Savart law gives the magnetic field at any point, P caused by a (fictitious) current 

element of length dL carrying a current of I amperes (refer to Figure A.1):

(A.4)

Where the point is located at a distance of r from the current element dL, and ar is the unit 

vector pointing from the element to the point.

The vector cross-product can be simplified to yield:

(A.5)
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Figure A.1.  Definition of variables in Biot-Savart law.
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Where θ is defined in Figure A.1. This can be used to calculate the field produced as a result 

of current flowing in a finite length of filamentary conductor. The conductor, of length l  is 

situated on the y  axis, and y0 is a point on this conductor. The point at which the field is to 

be monitored will be point (x,y). The axial symmetry of this procedure makes it unneces-

sary to consider the z axis.

From Figure A.1, r  and θ can be defined.

(A.6)

and

(A.7)

(3) and (4) can be inserted into (2) to get:

(A.8)

To find the total field at point (x,y), one must integrate over the length of the filamentary 

conductor, l.
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This expression gives the B field at any point, (x,y) as a result of a current, I flowing in a 

conductor of length l.

In order to calculate the mutual inductance, one must calculate the flux (Φ) linking another 

wire placed next to the wire analysed above. As flux linkage is calculated through a surface 

(S), a return path (that defines the boundary of the surface) must be defined. If the return 

path is taken at infinity, it is necessary to integrate over a rectangular area of dimensions l 

by infinity (see Figure A.2).

(A.12)

(A.13)

(A.14)

dl

Filamentary
Conductors

x

y
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(A.15)

The inductance can be easily calculated by applying equation A.16.

(A.16)

(A.17)

(A.18)

(A.19)

Notice that there were no approximations employed in the derivation of this equation, 

although the fact that an infinite return path was assumed implies that there will generally 
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143 APPENDIX B

EXACT FORMULA FOR GMD

The exact formula for the GMD between two rectangles is listed below [27].

where the two rectangles are symmetrically placed with dimensions a by b and a′ by b′, and 

are separated by a distance of p, with the dimensions of facing edges of the rectangles being 

the a and a′ dimensions, and: 
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APPENDIX C

INSTRUCTIONS FOR THE OPERATION OF GEMCAP

C.1 Introduction.

This section describes the operation of the GEMCAP (General Microstrip Coupling Anal-

ysis Program) program. The program accepts as input physical descriptions of microstrip 

coupled line structures, and produces files that can be analysed by SuperCompact, Scam-

per, and Touchstone.

This appendix describes the format of the input lines, the format of the profile file, and basic 

operation of the program.

C.2 Input Syntax

There are 7 statements that can be used in addition to the regular simulator elements. They 

are listed below: 

XSUB εr height(um)
XCON thickness(um) ohms/square
WID width1 width2 width3... (um)
GAP gap1 gap2 gap3.... (um)
NUM number
NUMM number1 number2
SEG node1 node2 length(um)
SEG node1 node2 length (um) node3 node4 length (um)... 

These statements can be used to describe conductors in 2 different manners. The possible 

configurations are shown in figure C.1 and C.2.           

XSUB εr h This defines the substrate εr and height (in microns). This must appear at least 

once before the first NUM statement, and can be used over and over again to redefine the 

parameters.
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Figure C.1.  Basic coupled line configuration for GEMCAP.
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Figure C.2.  Lines configured for analysis with end coupling.
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XCON t r  This defines the conductor thickness (in microns) and the conductor DC sheet 

resistivity. Again, it must appear at least once.

WID w1 w2 ... This statement defines the widths of the conductors in order. If there are 6 

conductors, then this line must have at least 6 entries. All entries are in microns. This line 

must appear once and may be repeated.

GAP g1 g2 ... This statement defines the gaps between the conductors in order. If there are 

6 conductors, then this line must have at least 5 entries. All entries are in microns. This line          

must appear once, and may be repeated.

LEN b1, b2, ... When end coupling is simulated, using the format in Figure A.2, the 

program assumes all segments, regardless of their length, fit into one of a regular array of 

areas. The number of areas in the array is defined in the NUMM statement, and the size of 

each area is defined by the LEN (the length) and WID statements. The LEN statement is 

required only if there are blocks that use the NUMM command. There must be m entries in 

the LEN statement. The lengths are in microns.

NUMM n m. This statement defines the number of parallel conductors (n) and end coupled 

conductors (m) in an array of end coupled lines. If this line is used, then the input is 

assumed to be in the form of Figure A.2.   

NUM n     This line defines the number of conductors in a group of coupled lines. It must 

be less than or equal to the number of entries in the WID statement. If this line is used, then 

the input is assumed to be in the form of Figure A.1.

SEG n1 n2 l This line defines one segment in a group of coupled lines. It will typically 

follow a NUM statement. Note that there must be a block of n (n defined in the NUM state-

ment) SEG statements without any other lines in between. The node numbers must be num-

bers, not letters. (even in Scamper. Also note that in scamper 01 is not the same as 1, so do 

not use any leading zeros) The lengths are specified in microns. If not all lengths in a block 

are equal, then the program assumes that the segments are entered relative to each other.
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SEG n1 n2 l1 n3 n4 l2 ... This line defines end coupled segments in a group of coupled lines. 

It will typically follow a NUMM statement. Note that there must be a block of n (n defined 

in the NUM statement) SEG statements without any other lines in between, and there must 

be m pairs of nodes and lengths in every segment line. The node numbers must be numbers, 

not letters. (even in Scamper. Also note that in scamper 01 is not the same as 1, so do not 

use any leading zeros) The lengths are specified in microns. If the lengths are positive, then 

the segments are assumed to be in the right side of the area defined by the LEN statement. 

If the lengths are negative, then they are assumed to be in the left side of the area defined 

in the length statement. If the length specified in the SEG line is the same as the length spec-

ified in the LEN statement, then the sign of the length is immaterial.

All GEMCAP statements must start on the far left side of the page. (Indentation is not 

allowed) Exponential notation may be used. 

C.3 GEMCAP Profile

There is a profile that specifies some of the options that GEMCAP uses. This file, called 

TRANSF PROFILE must exist on the A disk.

A typical file is shown below.

8 NUMBER OF SUBSTRIPS IN CAPACITOR CALCULATION 4 TO 10
600 FIRST NODE NUMBER TO BE USED 100 TO 900
Y INCLUDE EFFECT OF BACK METALIZATION Y OR N
Y USE GMD CALCULATION FOR CLOSE CONDUCTORS Y OR N
N DISPERSIVE LOSS CALCULATION Y OR N
Y INDUCTANCE CALCULATION NEXT ADJACENT? Y OR N
Y USE “PI” STRUCTURE FOR CAP TO GROUND? Y OR N
Y USE “PI” STRUCTURE FOR MUTUAL CAP?    Y OR N
Y USE STATIC INDUCTANCE CALCULATION Y OR N
 

The lines must be left in the same order. Only the number or letter in the far left is read, the 

rest is comment.
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First line: This line specifies the number of strips used in an individual capacitance calcu-

lation. It must lie between 4 and 10 and be even. 6 or 8 is recommended. The higher this 

number is, the more accurate, and slower the capacitance calculation is.

Second line: GEMCAP needs to add nodes to the network, and they should not correspond 

to any node that the user has used. GEMCAP will start at this number and work up. So, if 

it is set to 600, the user must not use any nodes greater than number 599.

Third Line: This line determines whether the ground plane image is considered when using 

the closed form equations.

Fourth Line: If you are using closed form inductance calculations, you can increase the 

accuracy of mutual inductance calculations (by using the GMD calculation in Appendix B) 

when the conductors are close by specifying Y here.

Fifth line: This line specifies whether DC resistance is to be used in the loss calculations 

(specify N) or if skin effect is to be included (specify Y). 

Sixth Line: This line turns the end coupling option on and off. If N is specified, both input 

formats are still valid, but end to end mutual inductance is ignored.

Seventh line: You have the choice of using a Π (Three element) or Γ (Two element) model 

for each segment for the capacitance to ground. Π (Specify Y) is more accurate, but results 

in a larger output file. If you cascade a large number of segments, then specifying N here 

will save space, with little loss in accuracy.

Eighth Line: As above for the mutual capacitance.

Ninth Line: Inductance can be calculated with closed form formulae or by inverting a unity 

ε capacitance matrix (ICM Technique). Specifying Y here invokes the ICM calculation. 

Note that if ICM is specified here, lines 3 and 4 are ignored. 
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C.4 Running GEMCAP

1: Type MACOM to link the correct disks.

2: Type PREPVS to link the IMSL disk and the correct TXTLIBs.

3: Prepare an input file (file type INP) according to the format shown in section A.2. The 

examples in the text will also be useful guides.

4: To run the program, you need a file called “TRANSF PROFILE” on your A disk. Copy 

this from “H” disk and modify as necessary. 

5: Type GORD31 fn, where fn is the name of the input file. When it asks, tell it what kind 

of file it is (Compact, Scamper or Touchstone).

6: It should tell you that you have no errors in your file, and then processing begins. When 

it is done, it will create a “Human readable” file for the simulator that you requested. There 

are 4 other files left on the disk. These files contain the input and output data for the induc-

tance and capacitance calculation routines, and can be edited.
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